Minimization of scalar curvature in conformal geometry

被引:7
作者
Sakellaris, Zisis N. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Scalar curvature; Variational problem; Conformal geometry; YAMABE PROBLEM; BOUNDARY; MANIFOLDS; EQUATIONS; EXISTENCE; METRICS;
D O I
10.1007/s10455-016-9524-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a smooth compact Riemannian manifold with smooth boundary and dimension . We consider a minimization problem for the scalar curvature R after a conformal change. In particular, we seek for minimizers of the functional of R, within a conformal class, under small energy assumptions and natural geometric constraints. We prove that minimizers exist, and have locally constant scalar curvature, outside of a set with explicit description.
引用
收藏
页码:73 / 89
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[2]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]  
Druet O, 2004, MATH N PRINC, V45, P1
[4]   CONFORMAL METRICS WITH PRESCRIBED SCALAR CURVATURE [J].
ESCOBAR, JF ;
SCHOEN, RM .
INVENTIONES MATHEMATICAE, 1986, 86 (02) :243-254
[5]  
ESCOBAR JF, 1992, J DIFFER GEOM, V35, P21
[7]  
Evans L. C., 1974, CBMS, V74
[8]  
GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order
[9]  
Han Q., 2000, CIMS LECT NOTES COUR, V1
[10]   The Yamabe problem on manifolds with boundary: Existence and compactness results [J].
Han, ZC ;
Li, YY .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :489-542