Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock

被引:26
作者
Ghosh, M. K. [2 ]
Kanoria, M. [1 ]
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
[2] Serampore Coll, Dept Math, Serampore 712201, Hooghly, India
关键词
generalized thermoelasticity; functionally graded material (FGM); Green-Lindsay theory; vector-matrix differential equation; Bellman method;
D O I
10.1007/s10483-008-1002-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.
引用
收藏
页码:1263 / 1278
页数:16
相关论文
共 35 条
[1]   THERMO-INELASTIC RESPONSE OF FUNCTIONALLY GRADED COMPOSITES [J].
ABOUDI, J ;
PINDERA, MJ ;
ARNOLD, SM .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (12) :1675-1710
[2]   A unified generalized thermo elasticity formulation; Application to thick functionally graded cylinders [J].
Bagri, A. ;
Eslami, M. R. .
JOURNAL OF THERMAL STRESSES, 2007, 30 (9-10) :911-930
[3]   Generalized coupled thermoelasticity of disks based on the Lord-Shulman model [J].
Bagri, A ;
Eslami, MR .
JOURNAL OF THERMAL STRESSES, 2004, 27 (08) :691-704
[4]  
Bahar LY, 1978, J THERM STRESSES, V1, P135, DOI 10.1080/01495737808926936
[5]  
Bellman R., 1966, Numerical Inversion of the Laplace Transform, DOI DOI 10.2307/2004790
[6]   THERMOELASTICITY AND IRREVERSIBLE THERMODYNAMICS [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (03) :240-253
[7]  
Chandrasekharaiah D. S., 1986, Appl. Mech. Rev., P355, DOI DOI 10.1115/1.3143705
[8]   Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy [J].
Chen, WQ .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2000, 35 (01) :13-20
[9]   Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy [J].
Chen, WQ ;
Wang, X ;
Ding, HJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 106 (05) :2588-2594
[10]   The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property [J].
Chen, WQ ;
Ding, HJ ;
Liang, J .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (38-39) :7015-7027