On Suzuki Mappings in Modular Spaces

被引:12
作者
Bejenaru, Andreea [1 ]
Postolache, Mihai [1 ,2 ,3 ]
机构
[1] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
[2] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[3] Romanian Acad, Gh Mihoc C Iacob Inst Math Stat & Appl Math, Bucharest 050711, Romania
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 03期
关键词
Suzuki mapping; modular space; Kirk's lemma; FIXED-POINT THEOREMS; NONEXPANSIVE-MAPPINGS; CONVERGENCE THEOREMS;
D O I
10.3390/sym11030319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inspired by Suzuki's generalization for nonexpansive mappings, we define the (C)-property on modular spaces, and provide conditions concerning the fixed points of newly introduced class of mappings in this new framework. In addition, Kirk's Lemma is extended to modular spaces. The main outcomes extend the classical results on Banach spaces. The major contribution consists of providing inspired arguments to compensate the absence of subadditivity in the case of modulars. The results herein are supported by illustrative examples.
引用
收藏
页数:11
相关论文
共 18 条
[1]  
Abbas M, 2011, FIXED POINT THEOR-RO, V12, P235
[2]   Fixed point theorems in modular vector spaces [J].
Abdou, Afrah A. N. ;
Khamsi, Mohamed A. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4046-4057
[3]   A Fixed Point Theorem for Uniformly Lipschitzian Mappings in Modular Vector Spaces [J].
Alfuraidan, M. R. ;
Khamsi, M. A. ;
Manav, N. .
FILOMAT, 2017, 31 (17) :5435-5444
[4]  
ANDALAFTE EZ, 1964, FUND MATH, V55, P23, DOI DOI 10.4064/FM-55-1-23-55
[5]  
[Anonymous], 1983, CONTEMP MATH-SINGAP, DOI DOI 10.1090/CONM/021/729507
[6]   Fixed point iteration processes for asymptotic pointwise nonexpansive mapping in modular function spaces [J].
Bin Dehaish, Buthinah A. ;
Kozlowski, W. M. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   FIXED-POINTS AND ITERATION OF A NONEXPANSIVE MAPPING IN A BANACH-SPACE [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (01) :65-71
[8]  
Khamsi M.A., 2015, Fixed Point Theory in Modular Function Spaces
[9]  
Khan SH, 2018, ARAB J MATH, V7, P281, DOI 10.1007/s40065-018-0204-x
[10]  
KIRK WA, 1981, NUMER FUNC ANAL OPT, V4, P371