Self-powered autonomous wireless sensor node using vibration energy harvesting

被引:196
|
作者
Torah, R. [1 ]
Glynne-Jones, P. [1 ]
Tudor, M. [1 ]
O'Donnell, T. [2 ]
Roy, S. [2 ]
Beeby, S. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO9 5NH, Hants, England
[2] Tyndall Natl Inst, Cork, Ireland
关键词
energy harvesting; electromagnetic generator; wireless sensor; self-powered systems;
D O I
10.1088/0957-0233/19/12/125202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system ( ACMS) powered by ambient vibrations. An electromagnetic ( EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s(rms)(-2) acceleration and can be as low as 0.2 m s(rms)(-2) with a duty cycle around 12 min. The EM generator has a volume of only 150 mm(3) producing an average power of 58 mu W at 0.6m s(rms)(-2) acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 mu W to be generated at 1.7 m s(rms)(-2) rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Energy harvesting wireless sensor for achieving self-powered structural health monitoring system
    Srinivasan, Revathy
    Ali, Umma Habiba Hyder
    CIRCUIT WORLD, 2020, 46 (04) : 307 - 315
  • [22] ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement
    Xiao, Jian
    Zou, Xiang
    Xu, Wenyao
    SENSORS, 2017, 17 (10)
  • [23] An Energy Autonomous 400 MHz Active Wireless SAW Temperature Sensor Powered by Vibration Energy Harvesting
    Zhu, Yao
    Zheng, Yuanjin
    Gao, Yuan
    Made, Darmayuda I.
    Sun, Chengliang
    Je, Minkyu
    Gu, Alex Yuandong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2015, 62 (04) : 976 - 985
  • [24] Self-powered Fault Diagnosis Using Vibration Energy Harvesting and Machine Learning
    Sato, Tomohiro
    Funato, Mitsuki
    Imai, Kiyotaka
    Nakajima, Takashi
    SENSORS AND MATERIALS, 2022, 34 (05) : 1909 - 1916
  • [25] A Self-powered Wireless Sensor Node for Structural Health Monitoring
    Zhou, Dao
    Kong, Na
    Ha, Dong Sam
    Inman, Daniel J.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2, 2010, 7650
  • [26] Self-powered wireless sensor node for flow and temperature sensing
    Hu, Yushen
    Yang, Jingchi
    Huang, Ziyu
    Zhang, Yulong
    Wang, Fei
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [27] Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester
    Aranda, Jesus Javier
    Bader, Sebastian
    Oelmann, Bengt
    SENSORS, 2021, 21 (04) : 1 - 18
  • [28] On Piezoelectric Vibration Generator for Self-Powered Wireless Sensor Network
    He, Qing
    Yan, Zhen
    Wang, Xueyang
    SENSOR LETTERS, 2011, 9 (05) : 1869 - 1873
  • [29] Self-Powered Wireless Sensor Node for Smart Railway Axle Box Bearing via a Variable Reluctance Energy Harvesting System
    Gong, Yun
    Wang, Sijia
    Xie, Zhengqiu
    Zhang, Tao
    Chen, Wenqiang
    Lu, Xingjie
    Zeng, Qiang
    Huang, Wenbin
    Gao, Yuhan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 (70)
  • [30] Self-powered energy-harvesting magnetic field sensor
    Hu, Lizhi
    Wu, Hanzhou
    Zhang, Qianshi
    You, Haoran
    Jiao, Jie
    Luo, Haosu
    Wang, Yaojin
    Gao, Anran
    Duan, Chungang
    APPLIED PHYSICS LETTERS, 2022, 120 (04)