Temperature dependence of Ni3S2 nanostructures with high electrochemical performance

被引:39
作者
Wang, Y. L. [1 ]
Wei, X. Q. [1 ]
Li, M. B. [1 ]
Hou, P. Y. [1 ]
Xu, X. J. [1 ]
机构
[1] Univ Jinan, Sch Phys & Technol, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni3S2; Solvothermal method; Electrochemical performance; NI FOAM; ELECTRODE MATERIAL; NICKEL FOAM; POROUS NIO; SULFIDE; SUPERCAPACITORS; FILMS; MICROFLOWERS; NANOFIBERS; SURFACE;
D O I
10.1016/j.apsusc.2017.11.270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different Ni3S2 nanostructures have been successfully synthesized at different temperatures by a facile and efficient solvothermal method. The Ni3S2 nanostructures with three-dimensional (3D) nanosheets array and silkworm eggs-like morphologies were obtained by adjusting the reaction temperature. A large number of 3D nanosheets are interconnected to form an open network structure with porous of Ni3S2 at 180 degrees C, and electrochemical tests showed that the special structure exhibited the outstanding specific capacitance (1357 F g(-1) at 1 Ag-1) and excellent cycling stability (maintained 91% after 3000 cycles). In comparison, the performance of Ni3S2 silkworm eggs-like structure is not very perfect. This may be due to the fact that the 3D nanosheets with porous structure can improve the electrochemical performance by shortening effectively the diffusion path of electrolyte ions and increasing the active sites during charging and discharging. Among them, the reaction temperature is the main factor to control the formation of the 3D nanosheets array. These results indicated the Ni3S2 nanosheets promising applications as high-performance supercapacitor electrode materials. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 50 条
  • [41] Engineering hybrid CoMoS4/Ni3S2 nanostructures as efficient bifunctional electrocatalyst for overall water splitting
    Hu, Peng
    Jia, Zhiyuan
    Che, Haibing
    Zhou, Wenyuan
    Liu, Ning
    Li, Fan
    Wang, Jinshu
    JOURNAL OF POWER SOURCES, 2019, 416 : 95 - 103
  • [42] CoO@CoS/Ni3S2 hierarchical nanostructure arrays for high performance asymmetric supercapacitor
    Zhang, Yihong
    Wang, Danyang
    Lu, Shiquan
    Chen, Yanli
    Fan, Hougang
    Wei, Maobin
    Yang, Lili
    Yu, William W.
    Meng, Xiangwei
    APPLIED SURFACE SCIENCE, 2020, 532 (532)
  • [43] Self-supporting composite electrode modified with Ni3S2 nanosheets: For high performance supercapacitors
    Dong, Kaiming
    Sun, Zhenjie
    Wang, Jiajun
    Jing, Ge
    Tang, Biao
    Kong, Lingwei
    Wu, Songtao
    Huang, Xiaoyang
    You, Xiaodong
    Guo, Feiqiang
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [44] Preparing Ni3S2 composite with neural network-like structure for high-performance flexible asymmetric supercapacitors
    Wang, Na
    Han, Gaoyi
    Chang, Yunzhen
    Hou, Wenjing
    Xiao, Yaoming
    Li, Honggang
    ELECTROCHIMICA ACTA, 2019, 317 : 322 - 332
  • [45] Design and Excellent HER Performance of a Novel 3D Mo-Doped Ni3S2/Ni Foam Composite
    Chen, Guoli
    Chen, Xiaoshuang
    Song, Kun
    Zhao, Nan
    Wang, Wenbo
    Yin, Guangming
    Liu, Yongzhi
    CHEMISTRYSELECT, 2019, 4 (42): : 12328 - 12332
  • [46] Synthesis of Ni3S2 and MOF-Derived Ni(OH)2 Composite Electrode Materials on Ni Foam for High-Performance Supercapacitors
    Shao, Meng
    Li, Jun
    Li, Jing
    Yan, Yanan
    Li, Ruoliu
    NANOMATERIALS, 2023, 13 (03)
  • [47] Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni3S2 Nanoparticles on Ni Foam for High-Performance Asymmetric Supercapacitor Electrodes
    Qi, Jiqiu
    Chang, Yuan
    Sui, Yanwei
    He, Yezeng
    Meng, Qingkun
    Wei, Fuxiang
    Zhao, Yulong
    Jin, Yunxue
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2017, 34 (12)
  • [48] Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte
    Yang, Yu Jun
    Hu, Xuan
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2019, 55 (02) : 88 - 96
  • [49] Construction of high-performance asymmetric supercapacitor based on the hierarchical Ni3S2/CoFe LDH/Ni foam hybrid
    Wang, Yixuan
    Zhang, Weijie
    Guo, Xinli
    Liu, Yuanyuan
    Zheng, Yanmei
    Zhang, Ming
    Li, Rui
    Peng, Zhengbin
    Zhao, Yuhong
    APPLIED SURFACE SCIENCE, 2021, 561
  • [50] High performance Ni3S2/3D graphene/nickel foam composite electrode for supercapacitor applications
    Li, Rui
    Zhang, Weijie
    Zhang, Ming
    Peng, Zhengbin
    Wang, Yixuan
    Liu, Yuanyuan
    Zheng, Yanmei
    Guo, Xinli
    Zhang, Yao
    Wang, Zengmei
    Zhang, Tong
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 257