Temperature dependence of Ni3S2 nanostructures with high electrochemical performance

被引:39
作者
Wang, Y. L. [1 ]
Wei, X. Q. [1 ]
Li, M. B. [1 ]
Hou, P. Y. [1 ]
Xu, X. J. [1 ]
机构
[1] Univ Jinan, Sch Phys & Technol, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni3S2; Solvothermal method; Electrochemical performance; NI FOAM; ELECTRODE MATERIAL; NICKEL FOAM; POROUS NIO; SULFIDE; SUPERCAPACITORS; FILMS; MICROFLOWERS; NANOFIBERS; SURFACE;
D O I
10.1016/j.apsusc.2017.11.270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different Ni3S2 nanostructures have been successfully synthesized at different temperatures by a facile and efficient solvothermal method. The Ni3S2 nanostructures with three-dimensional (3D) nanosheets array and silkworm eggs-like morphologies were obtained by adjusting the reaction temperature. A large number of 3D nanosheets are interconnected to form an open network structure with porous of Ni3S2 at 180 degrees C, and electrochemical tests showed that the special structure exhibited the outstanding specific capacitance (1357 F g(-1) at 1 Ag-1) and excellent cycling stability (maintained 91% after 3000 cycles). In comparison, the performance of Ni3S2 silkworm eggs-like structure is not very perfect. This may be due to the fact that the 3D nanosheets with porous structure can improve the electrochemical performance by shortening effectively the diffusion path of electrolyte ions and increasing the active sites during charging and discharging. Among them, the reaction temperature is the main factor to control the formation of the 3D nanosheets array. These results indicated the Ni3S2 nanosheets promising applications as high-performance supercapacitor electrode materials. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 46 条
[31]   Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage [J].
Wang, Jin ;
Chao, Dongliang ;
Liu, Jilei ;
Li, Linlin ;
Lai, Linfei ;
Lin, Jianyi ;
Shen, Zexiang .
NANO ENERGY, 2014, 7 :151-160
[32]   Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance [J].
Wang, Lina ;
Liu, Jiajia ;
Zhang, Li Li ;
Dai, Baosong ;
Xu, Meng ;
Ji, Muwei ;
Zhao, X. S. ;
Cao, Chuanbao ;
Zhang, Jiatao ;
Zhu, Hesun .
RSC ADVANCES, 2015, 5 (11) :8422-8426
[33]   Preparation of nanospherical porous NiO by a hard template route and its supercapacitor application [J].
Wang, Yiliang ;
Chang, Binbin ;
Guan, Daxiang ;
Pei, Kemei ;
Chen, Zhi ;
Yang, Maosheng ;
Dong, Xiaoping .
MATERIALS LETTERS, 2014, 135 :172-175
[34]   Ni3S2 coated ZnO array for high-performance supercapacitors [J].
Xing, Zhicai ;
Chu, Qingxin ;
Ren, Xinbang ;
Ge, Chenjiao ;
Qusti, Abdullah H. ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Sun, Xuping .
JOURNAL OF POWER SOURCES, 2014, 245 :463-467
[35]   Preparation of porous cadmium sulphide on nickel foam: a novel electrode material with excellent supercapacitor performance [J].
Xu, Panpan ;
Liu, Jijun ;
Yan, Peng ;
Miao, Chenxu ;
Ye, Ke ;
Cheng, Kui ;
Yin, Jinling ;
Cao, Dianxue ;
Li, Kaifeng ;
Wang, Guiling .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (13) :4920-4928
[36]   Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors [J].
Yang, Jiaqin ;
Duan, Xiaochuan ;
Qin, Qing ;
Zheng, Wenjun .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (27) :7880-7884
[37]   Edge-Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices [J].
Yang, Yang ;
Fei, Huilong ;
Ruan, Gedeng ;
Xiang, Changsheng ;
Tour, James M. .
ADVANCED MATERIALS, 2014, 26 (48) :8163-8168
[38]  
Yu SH, 2002, ADV FUNCT MATER, V12, P277, DOI 10.1002/1616-3028(20020418)12:4<277::AID-ADFM277>3.0.CO
[39]  
2-M
[40]   High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose [J].
Yu, Wendan ;
Lin, Worong ;
Shao, Xiaofeng ;
Hu, Zhaoxia ;
Li, Ruchun ;
Yuan, Dingsheng .
JOURNAL OF POWER SOURCES, 2014, 272 :137-143