Word Alignment Based Transformer Model for XML Structured Documentation Translation

被引:0
作者
An, Jing [1 ]
Tang, Yecheng [2 ]
Bai, Yanbing [2 ]
Li, Jiyi [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Linguist, Santa Barbara, CA 93106 USA
[2] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing, Peoples R China
[3] Univ Yamanashi, Kofu, Yamanashi, Japan
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT I | 2022年 / 13426卷
关键词
XML structured documentation; Machine translation; Word alignment; Transformer;
D O I
10.1007/978-3-031-12423-5_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of globalization, the development of localized translation technology for enterprise online documents is crucial for business promotion. The enterprise online documents are represented by semi-structured text documents with markup tags, while the mainstream neural machine translation methods focus on only the plain text translation. In this research, a Word Alignment based Transformer Model was proposed for markup language translation. Experiments conducted on the Salesforce XML English-Chinese datasets, and the result demonstrated that adding a word alignment model to the translation model can improve the translation model's performance in translating text with makup tags.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 7 条
[1]  
Hanneman G., 2020, P 5 C MACH TRANSL, P1160
[2]  
Hashimoto K, 2019, FOURTH CONFERENCE ON MACHINE TRANSLATION (WMT 2019), VOL 1: RESEARCH PAPERS, P116
[3]  
Joanis E., 2013, P 2 WORKSHOP POSTEDI
[4]  
Muller Mathias, 2017, P 3 WORKSH DISC MACH, P36
[5]  
Ott M, 2019, Arxiv, DOI arXiv:1904.01038
[6]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[7]  
Vaswani A, 2017, ADV NEUR IN, V30