Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells

被引:62
作者
Hartwick, Andrew T. E. [1 ,2 ]
Hamilton, Claire M. [1 ,2 ]
Baldridge, William H. [1 ,2 ,3 ]
机构
[1] Dalhousie Univ, Dept Anat & Neurobiol, Halifax, NS B3H 1X5, Canada
[2] Dalhousie Univ, Retina & Opt Nerve Res Lab, Halifax, NS B3H 1X5, Canada
[3] Dalhousie Univ, Dept Ophthalmol & Visual Sci, Halifax, NS B3H 1X5, Canada
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2008年 / 586卷 / 14期
关键词
D O I
10.1113/jphysiol.2008.154609
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A rise in intracellular calcium levels ([Ca2+](i)) is a key trigger for the lethal effects of the excitatory neurotransmitter glutamate in various central neurons, but a consensus has not been reached on the pathways that mediate glutamate-dependent increases of [Ca2+](i) in retinal ganglion cells (RGCs). Using Ca2+ imaging techniques we demonstrated that, in the absence of external Mg2+, the Ca2+ signal evoked by glutamate was predominantly mediated by NMDA-type glutamate receptors (NMDA-Rs) in immunopanned RGCs isolated from neonatal or adult rats. Voltage-gated Ca2+ channels and AMPA/kainate-Rs contributed a smaller portion of the Ca2+ response at saturating concentrations of glutamate. Consistent with NMDA-R involvement, extracellular Mg2+ inhibited RGC glutamate responses, while glycine had a potentiating effect. With Mg2+ present externally, the effect of AMPA/kainate-R antagonists was enhanced and both NMDA- and AMPA/kainate-R antagonists greatly reduced the glutamate-induced increases of RGC [Ca2+](i). This finding indicates that the primary contribution of AMPA/kainate-Rs to RGC glutamatergic Ca2+ dynamics is through the depolarization-dependent relief of the Mg2+ block of NMDA-R channels. The effect of glutamate receptor antagonists on glutamatergic Ca2+ signals from RGCs in adult rat retinal wholemounts yielded results similar to those obtained using immunopanned RGCs. Additional experiments on isolated RGCs revealed that during a 1 h glutamate (10-1000 mu M) exposure, 18-28% of RGCs exhibited delayed Ca2+ deregulation (DCD) and the RGCs that underwent DCD were positive for the death marker annexin V. RGCs with larger glutamate-evoked Ca2+ signals were more likely to undergo DCD, and NMDA-R blockade significantly reduced the occurrence of DCD. Identifying the mechanisms underlying RGC excitotoxicity aids in our understanding of the pathophysiology of retinal ischaemia, and this work establishes a major role for NMDA-R-mediated increases in [Ca2+](i) in glutamate-related RGC death.
引用
收藏
页码:3425 / 3446
页数:22
相关论文
共 86 条
[1]   RESPONSES MEDIATED BY EXCITATORY AMINO-ACID RECEPTORS IN SOLITARY RETINAL GANGLION-CELLS FROM RAT [J].
AIZENMAN, E ;
FROSCH, MP ;
LIPTON, SA .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 396 :75-91
[2]  
ASCHER P, 1988, J PHYSIOL-LONDON, V399, P247
[3]  
Baldridge WH, 1996, J NEUROSCI, V16, P5060
[4]   Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity [J].
Bano, D ;
Young, KW ;
Guerin, CJ ;
LeFeuvre, R ;
Rothwell, NJ ;
Naldini, L ;
Rizzuto, R ;
Carafoli, E ;
Nicotera, P .
CELL, 2005, 120 (02) :275-285
[5]  
Bansal A, 2000, J NEUROSCI, V20, P7672
[6]   IMMUNOLOGICAL, MORPHOLOGICAL, AND ELECTROPHYSIOLOGICAL VARIATION AMONG RETINAL GANGLION-CELLS PURIFIED BY PANNING [J].
BARRES, BA ;
SILVERSTEIN, BE ;
COREY, DP ;
CHUN, LLY .
NEURON, 1988, 1 (09) :791-803
[7]  
BOLAND LM, 1994, J NEUROSCI, V14, P5011
[8]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576
[9]   Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death [J].
Camacho, A ;
Massieu, L .
ARCHIVES OF MEDICAL RESEARCH, 2006, 37 (01) :11-18
[10]   Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina [J].
Chen, S ;
Diamond, JS .
JOURNAL OF NEUROSCIENCE, 2002, 22 (06) :2165-2173