Hypercyclic and chaotic semigroups of linear operators

被引:174
作者
Desch, W [1 ]
Schappacher, W [1 ]
Webb, GF [1 ]
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37240
关键词
D O I
10.1017/S0143385797084976
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate hypercyclic and chaotic behavior of linear strongly continuous semigroups. We give necessary and sufficient conditions on the semigroup to be hypercyclic, and sufficient conditions on the spectrum of an operator to generate a hypercyclic semigroup. A variety of examples is provided.
引用
收藏
页码:793 / 819
页数:27
相关论文
共 23 条
[1]  
Arendt W., 1986, LECT NOTES MATH, V1184
[2]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[3]  
Beauzamy B., 1988, N HOLLAND MATH LIB
[5]   ERGODICITY AND EXACTNESS OF THE SHIFT ON C[O,INFINITY) AND THE SEMIFLOW OF A 1ST-ORDER PARTIAL-DIFFERENTIAL EQUATION [J].
BRUNOVSKY, P ;
KOMORNIK, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 104 (01) :235-245
[6]   THE CYCLIC BEHAVIOR OF TRANSLATION OPERATORS ON HILBERT-SPACES OF ENTIRE-FUNCTIONS [J].
CHAN, KC ;
SHAPIRO, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) :1421-1449
[7]  
DESCH W, 1986, LECT NOTES MATH, V1223, P61
[8]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[9]   UNIVERSAL VECTORS FOR OPERATORS ON SPACES OF HOLOMORPHIC-FUNCTIONS [J].
GETHNER, RM ;
SHAPIRO, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) :281-288
[10]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269