Diffusion of oriented particles in porous media

被引:3
|
作者
Haber, Rene [1 ,2 ]
Prehl, Janett [1 ]
Herrmann, Heiko [2 ]
Hoffmann, Karl Heinz [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Tallinn Univ Technol, Inst Cybernet, Ctr Nonlinear Studies, EE-12618 Tallinn, Estonia
关键词
Anomalous diffusion; Random walks; Oriented random walks; Porous media; Sierpinski carpets; ANOMALOUS DIFFUSION; RANDOM-WALKS; SIERPINSKI CARPETS; LIQUID-CRYSTALS; SUBDIFFUSION; EQUATIONS; FRACTALS; ENTROPY; FLUIDS; CELLS;
D O I
10.1016/j.physleta.2013.08.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2840 / 2845
页数:6
相关论文
共 50 条
  • [31] Transport of Microplastic Particles in Saturated Porous Media
    Chu, Xianxian
    Li, Tiantian
    Li, Zhen
    Yan, An
    Shen, Chongyang
    WATER, 2019, 11 (12)
  • [32] Theory and simulation of time-fractional fluid diffusion in porous media
    Carcione, Jose M.
    Sanchez-Sesma, Francisco J.
    Luzon, Francisco
    Perez Gavilan, Juan J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
  • [33] Transport phenomena in sharply contrasting media with a diffusion barrier
    Dvoretskaya, O. A.
    Kondratenko, P. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (46)
  • [34] Direct simulation of the influence of the pore structure on the diffusion process in porous media
    Yong, Yumei
    Lou, Xiaojun
    Li, Sha
    Yang, Chao
    Yin, Xiaolong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) : 412 - 423
  • [35] TRACING DIFFUSION IN POROUS MEDIA WITH FRACTAL PROPERTIES
    Vladimirov, Igor G.
    Klimenko, A. Y.
    MULTISCALE MODELING & SIMULATION, 2010, 8 (04) : 1178 - 1211
  • [36] Reaction–Diffusion Equation on Thin Porous Media
    María Anguiano
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3089 - 3110
  • [37] Parametrical study of thermogravitational diffusion in porous media
    Marcoux, M
    Carrier-Mojtabi, MC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (09): : 539 - 546
  • [38] Diffusion-limited reactions in dynamic heterogeneous media
    Lanoiselee, Yann
    Moutal, Nicolas
    Grebenkov, Denis S.
    NATURE COMMUNICATIONS, 2018, 9
  • [39] Modeling of composite fibrous porous diffusion media
    Didari, Sima
    Asadi, Arash
    Wang, Yan
    Harris, Tequila A. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9375 - 9386
  • [40] Onset of fractional-order thermal convection in porous media
    Karani, Hamid
    Rashtbehesht, Majid
    Huber, Christian
    Magin, Richard L.
    PHYSICAL REVIEW E, 2017, 96 (06)