Diffusion of oriented particles in porous media

被引:3
|
作者
Haber, Rene [1 ,2 ]
Prehl, Janett [1 ]
Herrmann, Heiko [2 ]
Hoffmann, Karl Heinz [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Tallinn Univ Technol, Inst Cybernet, Ctr Nonlinear Studies, EE-12618 Tallinn, Estonia
关键词
Anomalous diffusion; Random walks; Oriented random walks; Porous media; Sierpinski carpets; ANOMALOUS DIFFUSION; RANDOM-WALKS; SIERPINSKI CARPETS; LIQUID-CRYSTALS; SUBDIFFUSION; EQUATIONS; FRACTALS; ENTROPY; FLUIDS; CELLS;
D O I
10.1016/j.physleta.2013.08.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2840 / 2845
页数:6
相关论文
共 50 条
  • [21] Local diffusion and diffusion-T2 distribution measurements in porous media
    Vashaee, S.
    Newling, B.
    MacMillan, B.
    Marica, F.
    Li, M.
    Balcom, B. J.
    JOURNAL OF MAGNETIC RESONANCE, 2017, 278 : 104 - 112
  • [22] On diffusion, dispersion and reaction in porous media
    Valdes-Parada, F. J.
    Aguilar-Madera, C. G.
    Alvarez-Ramirez, J.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (10) : 2177 - 2190
  • [23] Upscaling diffusion waves in porous media
    Valdes-Parada, Francisco J.
    Alvarez Ramirez, Jose
    Alberto Ochoa-Tapia, J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 448 : 57 - 67
  • [24] Influence of preferred orientation of clay particles on the diffusion of water in kaolinite porous media at constant porosity
    Dabat, Thomas
    Porion, Patrice
    Hubert, Fabien
    Paineau, Erwan
    Dazas, Baptiste
    Gregoire, Brian
    Tertre, Emmanuel
    Delville, Alfred
    Ferrage, Eric
    APPLIED CLAY SCIENCE, 2020, 184
  • [25] Anomalous diffusion of self-propelled particles
    Sevilla, Francisco
    Chacon-Acosta, Guillermo
    Sandev, Trifce
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (33)
  • [26] Diffusion of fluids in porous media with memory
    Caputo, M
    GEOTHERMICS, 1999, 28 (01) : 113 - 130
  • [27] Interplay of adsorption and surface mobility in tracer diffusion in porous media
    Olivares, Carlos
    Aarao Reis, F. D. A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [28] Numerical study on gas diffusion in isotropic and anisotropic fractal porous media (gas diffusion in fractal porous media)
    Ma, Qiang
    Chen, Zhenqian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 79 : 925 - 929
  • [29] Non-universal tracer diffusion in crowded media of non-inert obstacles
    Ghosh, Surya K.
    Cherstvy, Andrey G.
    Metzler, Ralf
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (03) : 1847 - 1858
  • [30] Solutions for a fractional diffusion equation in heterogeneous media
    Lenzi, E. K.
    da Silva, L. R.
    Sandev, T.
    Zola, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,