Diffusion of oriented particles in porous media

被引:3
|
作者
Haber, Rene [1 ,2 ]
Prehl, Janett [1 ]
Herrmann, Heiko [2 ]
Hoffmann, Karl Heinz [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[2] Tallinn Univ Technol, Inst Cybernet, Ctr Nonlinear Studies, EE-12618 Tallinn, Estonia
关键词
Anomalous diffusion; Random walks; Oriented random walks; Porous media; Sierpinski carpets; ANOMALOUS DIFFUSION; RANDOM-WALKS; SIERPINSKI CARPETS; LIQUID-CRYSTALS; SUBDIFFUSION; EQUATIONS; FRACTALS; ENTROPY; FLUIDS; CELLS;
D O I
10.1016/j.physleta.2013.08.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2840 / 2845
页数:6
相关论文
共 50 条
  • [1] Diffusion in Porous Media: Phenomena and Mechanisms
    Tartakovsky, Daniel M.
    Dentz, Marco
    TRANSPORT IN POROUS MEDIA, 2019, 130 (01) : 105 - 127
  • [2] Modelling anomalous diffusion in semi-infinite disordered systems and porous media
    Metzler, Ralf
    Rajyaguru, Ashish
    Berkowitz, Brian
    NEW JOURNAL OF PHYSICS, 2022, 24 (12):
  • [3] A diffusivity model for gas diffusion through fractal porous media
    Zheng, Qian
    Yu, Boming
    Wang, Shifang
    Luo, Liang
    CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) : 650 - 655
  • [4] Random walks of oriented particles on fractals
    Haber, Rene
    Prehl, Janett
    Hoffmann, Karl Heinz
    Herrmann, Heiko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (15)
  • [5] Nonlocal Diffusion in Porous Media: A Spatial Fractional Approach
    Sapora, A.
    Cornetti, P.
    Chiaia, B.
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (05)
  • [6] DIFFUSION IN SPATIALLY VARYING POROUS MEDIA
    Bruna, Maria
    Chapman, S. Jonathan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) : 1648 - 1674
  • [7] Gas Diffusion in Fractal Porous Media
    Cao, Liyong
    He, Rong
    COMBUSTION SCIENCE AND TECHNOLOGY, 2010, 182 (07) : 822 - 841
  • [8] Application of p-Adic Wavelets to Model Reaction-Diffusion Dynamics in Random Porous Media
    Khrennikov, Andrei
    Oleschko, Klaudia
    Correa Lopez, Maria de Jess
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (04) : 809 - 822
  • [9] A RANDOM FIELD MODEL FOR ANOMALOUS DIFFUSION IN HETEROGENEOUS POROUS-MEDIA
    GLIMM, J
    SHARP, DH
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (1-2) : 415 - 424
  • [10] Universal scaling of gas diffusion in porous media
    Ghanbarian, Behzad
    Hunt, Allen G.
    WATER RESOURCES RESEARCH, 2014, 50 (03) : 2242 - 2256