Particle methods for change detection, system identification, and control

被引:197
作者
Andrieu, C [1 ]
Doucet, A
Singh, SS
Tadic, VB
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Univ Melbourne, Dept Elect Engn, Melbourne, Vic 3010, Australia
[4] Univ Sheffield, Dept Automat Control, Sheffield S1 3JD, S Yorkshire, England
关键词
change detection; control; optimal filtering; parameter estimation; sequential Monte Carlo; state-space models; stochastic approximation;
D O I
10.1109/JPROC.2003.823142
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle methods are a set of powerful and versatile simulation-based methods to perform optimal state estimation in nonlinear non-Gaussian state-space models. The ability to compute the optimal filter is central to solving important problems in areas such as change detection, parameter estimation, and control. Much recent work has been done in these areas. The objective of this paper is to provide a detailed overview of them.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 58 条
[31]  
KASTELLA K, 1996, P IMACS C COMP ENG S, P167
[32]   A self-organizing state-space model [J].
Kitagawa, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :1203-1215
[33]  
Kitagawa G., 1996, Journal of Computational and Graphical Statistics, V5, P1, DOI [10.1080/10618600.1996.10474692, DOI 10.1080/10618600.1996.10474692, DOI 10.2307/1390750]
[34]  
Koutsoukos Xenofon, 2002, INT S MATH THEOR NET
[35]  
LeGland F, 1997, IEEE DECIS CONTR P, P3468, DOI 10.1109/CDC.1997.652384
[36]  
LeGland F, 2000, IEEE DECIS CONTR P, P4686, DOI 10.1109/CDC.2001.914667
[37]  
LERNER U, 2002, P C UNC ART INT EDM
[38]   Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems [J].
Li, P ;
Kadirkamanathan, V .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (03) :337-343
[39]  
Liu J, 2001, STAT ENG IN, P197
[40]  
LJUNG L, 1987, THEORY PRACTICE RECU