Expansions over a simplex of real functions by means of Bernoulli polynomials

被引:17
作者
Costabile, F [1 ]
Dell'Accio, F [1 ]
机构
[1] Univ Calabria, I-87030 Commenda Di Rende, Italy
关键词
Bernoulli polynomials; expansion; simplex;
D O I
10.1023/A:1014074211736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [1] there is an expansion in Bernoulli polynomials for sufficiently smooth real functions in an interval [a, b] subset of R that has useful applications to numerical analysis. An analogous result in a 2-dimensional context is derived in [2] in the case of rectangle. In this note we Generalize the above-mentioned one-dimensional expansion to the case of C-m-functions on a 2-dimensional simplex; a method to generalize the expansion on an N-dimensional simplex is also discussed. This new expansion is applied to find new cubature formulas for 2-dimensional simplex.
引用
收藏
页码:63 / 86
页数:24
相关论文
共 5 条
[1]   An iterative method for the computation of the solutions of nonlinear equations [J].
Costabile, F ;
Gualtieri, MI ;
Capizzano, SS .
CALCOLO, 1999, 36 (01) :17-34
[2]  
COSTABILE F, 1999, C SEM U BARI, V273
[3]  
COSTABILE F, 2000, INT J APPL MATH, V3, P47
[4]   Expansion over a rectangle of real functions in Bernoulli polynomials and applications [J].
Costabile, FA ;
Dell'Accio, F .
BIT, 2001, 41 (03) :451-464
[5]  
ENGELS H, 1980, NUMERICAL QUADRATURE