The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport

被引:419
作者
Bennett, T
Sieberer, T
Willett, B
Booker, J
Luschnig, C
Leyser, O [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
[2] Univ Nat Resources & Appl Life Sci, Inst Appl Genet & Cell Biol, A-1190 Vienna, Austria
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/j.cub.2006.01.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Plants achieve remarkable plasticity in shoot system architecture by regulating the activity of secondary shoot meristems, laid down in the axil of each leaf. Axillary meristem activity, and hence shoot branching, is regulated by a network of interacting hormonal signals that move through the plant. Among these, auxin, moving down the plant in the main stem, indirectly inhibits axillary bud outgrowth, and an as yet undefined hormone, the synthesis of which in Arabidopsis requires MAX1, MAX3, and MAX4, moves up the plant and also inhibits shoot branching. Since the axillary buds of max4 mutants are resistant to the inhibitory effects of apically supplied auxin, auxin and the MAX-dependent hormone must interact to inhibit branching. Results: Here we show that the resistance of max mutant buds to apically supplied auxin is largely independent of the known, AXR1-mediated, auxin signal transduction pathway. Instead, it is caused by increased capacity for auxin transport in max primary stems, which show increased expression of PIN auxin efflux facilitators. The max phenotype is dependent on PIN1 activity, but it is independent of flavonoids, which are known regulators of PIN-dependent auxin transport. Conclusions: The MAX-dependent hormone is a novel regulator of auxin transport. Modulation of auxin transport in the stem is sufficient to regulate bud outgrowth, independent of AXR1-mediated auxin signaling. We therefore propose an additional mechanism for long-range signaling by auxin in which bud growth is regulated by competition between auxin sources for auxin transport capacity in the primary stem.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 50 条
  • [11] The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light
    Buer, CS
    Muday, GK
    [J]. PLANT CELL, 2004, 16 (05) : 1191 - 1205
  • [12] The hormonal regulation of axillary bud growth in Arabidopsis
    Chatfield, SP
    Stirnberg, P
    Forde, BG
    Leyser, O
    [J]. PLANT JOURNAL, 2000, 24 (02) : 159 - 169
  • [13] The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier
    Chen, RJ
    Hilson, P
    Sedbrook, J
    Rosen, E
    Caspar, T
    Masson, PH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 15112 - 15117
  • [14] APICAL DOMINANCE
    CLINE, MG
    [J]. BOTANICAL REVIEW, 1991, 57 (04) : 318 - 358
  • [15] The F-box protein TIR1 is an auxin receptor
    Dharmasiri, N
    Dharmasiri, S
    Estelle, M
    [J]. NATURE, 2005, 435 (7041) : 441 - 445
  • [16] STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants
    Diener, AC
    Li, HX
    Zhou, WX
    Whoriskey, WJ
    Nes, WD
    Fink, GR
    [J]. PLANT CELL, 2000, 12 (06) : 853 - 870
  • [17] EKOLF S, 1995, PLANT CELL PHYSL, V38, P225
  • [18] The branching gene RAMOSUS1 mediates interactions among two novel signals 464 and auxin in pea
    Foo, E
    Buillier, E
    Goussot, M
    Foucher, F
    Rameau, C
    Beveridge, CA
    [J]. PLANT CELL, 2005, 17 (02) : 464 - 474
  • [19] Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis
    Friml, J
    Wisniewska, J
    Benkova, E
    Mendgen, K
    Palme, K
    [J]. NATURE, 2002, 415 (6873) : 806 - 809
  • [20] AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis
    Friml, J
    Benková, E
    Blilou, I
    Wisniewska, J
    Hamann, T
    Ljung, K
    Woody, S
    Sandberg, G
    Scheres, B
    Jürgens, G
    Palme, K
    [J]. CELL, 2002, 108 (05) : 661 - 673