Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library

被引:326
|
作者
Zhu, Shiyou [1 ,2 ]
Li, Wei [3 ,4 ]
Liu, Jingze [1 ,2 ]
Chen, Chen-Hao [3 ,4 ]
Liao, Qi [5 ]
Xu, Ping [1 ]
Xu, Han [6 ]
Xiao, Tengfei [4 ,7 ]
Cao, Zhongzheng [1 ,8 ]
Peng, Jingyu [1 ]
Yuan, Pengfei [1 ]
Brown, Myles [4 ,7 ,9 ,10 ]
Liu, Xiaole Shirley [3 ,4 ]
Wei, Wensheng [1 ]
机构
[1] Peking Univ, State Key Lab Prot & Plant Gene Res, Sch Life Sci,Biodynam Opt Imaging Ctr BIOPIC, Beijing Adv Innovat Ctr Genom,Peking Tsinghua Ctr, Beijing, Peoples R China
[2] Peking Univ, Peking Univ Tsinghua Univ Natl Inst Biol Sci Join, Beijing, Peoples R China
[3] Harvard TH Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Ctr Funct Canc Epigenet, Boston, MA 02115 USA
[5] Ningbo Univ, Sch Med, Dept Prevent Med, Ningbo, Zhejiang, Peoples R China
[6] Broad Inst MIT & Harvard, Cambridge Ctr, Cambridge, MA USA
[7] Dana Farber Canc Inst, Dept Med Oncol, Div Mol & Cellular Oncol, Boston, MA USA
[8] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[9] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[10] Harvard Med Sch, Boston, MA USA
基金
美国国家科学基金会;
关键词
HUMAN-CELLS; FUNCTIONAL GENOMICS; CRISPR/CAS9; LIBRARY; ESSENTIAL GENES; ACTIVATION; SYSTEM; DNA; IDENTIFICATION; REPRESSION; CANCER;
D O I
10.1038/nbt.3715
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9 screens have been widely adopted to analyze coding-gene functions, but high-throughput screening of non-coding elements using this method is more challenging because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. We report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (IncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 IncRNAs that can positively or negatively regulate human cancer cell growth. We validated 9 of 51 IncRNA hits using CRISPR-Cas9-mediated genomic deletion, functional rescue, CRISPR activation or inhibition and gene-expression profiling. Our high-throughput pgRNA genome deletion method will enable rapid identification of functional mammalian non-coding elements.
引用
收藏
页码:1279 / 1286
页数:8
相关论文
共 22 条
  • [1] Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
    Joung, Julia
    Konermann, Silvana
    Gootenberg, Jonathan S.
    Abudayyeh, Omar O.
    Platt, Randall J.
    Brigham, Mark D.
    Sanjana, Neville E.
    Zhang, Feng
    NATURE PROTOCOLS, 2017, 12 (04) : 828 - 863
  • [2] Challenges of CRISPR/Cas9 applications for long non-coding RNA genes
    Goyal, Ashish
    Myacheva, Ksenia
    Gross, Matthias
    Klingenberg, Marcel
    Arque, Berta Duran
    Diederichs, Sven
    NUCLEIC ACIDS RESEARCH, 2017, 45 (03) : e12
  • [3] Genome-scale CRISPR-Cas9 knockout screening in nasopharyngeal carcinoma for radiosensitive and radioresistant genes
    Zhou, Ziyan
    Chen, Gang
    Shen, Mingjun
    Li, Jixi
    Liu, Kang
    Liu, Ming
    Shi, Shuo
    Chen, Wei
    Chen, Sixia
    Yin, Yuanxiu
    Qin, Yating
    Su, Xuejin
    Chen, Weimin
    Kang, Min
    TRANSLATIONAL ONCOLOGY, 2023, 30
  • [4] Determining antigen specificity of a monoclonal antibody using genome-scale CRISPR-Cas9 knockout library
    Zotova, Anastasia
    Zotov, Ivan
    Filatov, Alexander
    Mazurov, Dmitriy
    JOURNAL OF IMMUNOLOGICAL METHODS, 2016, 439 : 8 - 14
  • [5] Screening Genes Promoting Exit from Naive Pluripotency Based on Genome-Scale CRISPR-Cas9 Knockout
    Yang, Bin
    Kuang, Junqi
    Wu, Chuman
    Zhou, Wenyi
    Zhu, Shuoji
    Jiang, Haodong
    Zhai, Ziwei
    Wu, Yue
    Peng, Junwei
    Liu, Nanbo
    Hu, Haiyan
    Ide, Nasser Moussa
    Chen, Ruiping
    Zhao, Mingyi
    Zhu, Ping
    STEM CELLS INTERNATIONAL, 2020, 2020
  • [6] Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance
    Lu, Yonggang
    Shen, Haoming
    Huang, Wenjie
    He, Sha
    Chen, Jianlin
    Zhang, Di
    Shen, Yongqi
    Sun, Yifan
    CELL DEATH DISCOVERY, 2021, 7 (01)
  • [7] Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges
    Zhou, Heng
    Ye, Peng
    Xiong, Wei
    Duan, Xingxiang
    Jing, Shuili
    He, Yan
    Zeng, Zhi
    Wei, Yen
    Ye, Qingsong
    STEM CELL RESEARCH & THERAPY, 2024, 15 (01)
  • [8] Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology
    Mahato, Rahul Kumar
    Bhattacharya, Srinjan
    Khullar, Naina
    Sidhu, Inderpal Singh
    Reddy, P. Hemachandra
    Bhatti, Gurjit Kaur
    Bhatti, Jasvinder Singh
    JOURNAL OF BIOTECHNOLOGY, 2024, 379 : 98 - 119
  • [9] Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9
    Park, Jeongbin
    Kim, Jin-Soo
    Bae, Sangsu
    BIOINFORMATICS, 2016, 32 (13) : 2017 - 2023
  • [10] Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines
    Ho, Tsui-Ting
    Zhou, Nanjiang
    Huang, Jianguo
    Koirala, Pratirodh
    Xu, Min
    Fung, Roland
    Wu, Fangting
    Mo, Yin-Yuan
    NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : e17