Policy Search for Multi-Robot Coordination under Uncertainty

被引:0
作者
Amato, Christopher [1 ]
Konidaris, George [2 ,3 ]
Anders, Ariel [4 ]
Cruz, Gabriel [4 ]
How, Jonathan P. [5 ]
Kaelbling, Leslie P. [2 ,3 ]
机构
[1] Univ New Hampshire, Dept Comp Sci, Durham, NH 03824 USA
[2] Duke Univ, Dept Comp Sci & Elect Engn, Durham, NC 27708 USA
[3] Duke Univ, Dept Comp Engn, Durham, NC 27708 USA
[4] MIT, CSAIL, Cambridge, MA 02139 USA
[5] MIT, LIDS, Cambridge, MA 02139 USA
来源
ROBOTICS: SCIENCE AND SYSTEMS XI | 2015年
基金
美国国家科学基金会;
关键词
DECENTRALIZED CONTROL; FRAMEWORK; MOTION;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We introduce a principled method for multi-robot coordination based on a generic model (termed a MacDec-POMDP) of multi-robot cooperative planning in the presence of stochasticity, uncertain sensing and communication limitations. We present a new MacDec-POMDP planning algorithm that. searches over policies represented as finite-state controllers, rather than the existing policy tree representation. Finite-state controllers can he much more concise than trees, arc much easier to interpret, and can operate over an infinite horizon. The resulting policy search algorithm requires a substantially simpler simulator that models only the outcomes of executing a given set of motor controllers, not the details of the executions themselves and can to solve significantly larger problems than existing MacDec-POMDP planners. We demonstrate significantly improved performance over previous methods and application to a cooperative multi-robot bartending task, showing that our method can he used for actual multi-robot systems.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
Amato C, 2014, AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P1273
[2]  
Amato C, 2013, IEEE DECIS CONTR P, P2398, DOI 10.1109/CDC.2013.6760239
[3]   Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs [J].
Amato, Christopher ;
Bernstein, Daniel S. ;
Zilberstein, Shlomo .
AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2010, 21 (03) :293-320
[4]  
Amato Christopher, 2015, P INT C ROB AUT
[5]  
[Anonymous], 2009, INT C AUT AG MULT SY
[6]  
[Anonymous], 2005, INT J HUMANOID ROB, DOI DOI 10.1142/S0219843605000545
[7]   Integrated perception and planning in the continuous space: A POMDP approach [J].
Bai, Haoyu ;
Hsu, David ;
Lee, Wee Sun .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (09) :1288-1302
[8]   Symbolic planning and control of robot motion - Finding the missing pieces of current methods and ideas [J].
Belta, Calin ;
Bicchi, Antonio ;
Egerstedt, Magnus ;
Frazzoli, Emilio ;
Klavins, Eric ;
Pappas, George J. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2007, 14 (01) :61-70
[9]   Policy Iteration for Decentralized Control of Markov Decision Processes [J].
Bernstein, Daniel S. ;
Amato, Christopher ;
Hansen, Eric A. ;
Zilberstein, Shlomo .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2009, 34 :89-132
[10]   The complexity of decentralized control of Markov decision processes [J].
Bernstein, DS ;
Givan, R ;
Immerman, N ;
Zilberstein, S .
MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (04) :819-840