Finite Velocity of the Propagation of Perturbations for a Class of Non-Newtonian Fluids

被引:0
作者
Yuan, Hongjun [1 ]
Li, Huapeng [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Jilin, Peoples R China
关键词
Existence; Non-Newtonian fluids; Finite propagation; Morser's iteration; EXISTENCE; EQUATIONS; UNIQUENESS;
D O I
10.1007/s10440-012-9780-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial boundary value problem of a class of non-Newtonian fluids. We obtain that finite velocity of the propagation of perturbations.
引用
收藏
页码:49 / 77
页数:29
相关论文
共 22 条
[1]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[2]   Regularization of a non-Newtonian system in an unbounded channel: existence of a maximal compact attractor [J].
Bloom, F ;
Hao, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (06) :743-766
[3]  
Bohme G., 1987, Non-Newtonian Fluid Mechanics
[4]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[5]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[6]   Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states [J].
Hoff D. .
Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 (5) :774-785
[7]  
Huang X., 2010, ARXIV10044749V2MATHP
[8]  
Huilgol RR., 1975, Continuum mechanics of viscoelastic liquids
[9]   Vacuum problem of one-dimensional compressible Navier-Stokes equations [J].
Li, H. -L. ;
Li, J. ;
Xin, Z. .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, :161-172
[10]   Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations [J].
Li, Hai-Liang ;
Li, Jing ;
Xin, Zhouping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (02) :401-444