Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation

被引:53
作者
Song, Xiaolei [1 ]
Alkhalifah, Tariq [2 ]
机构
[1] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA
[2] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
关键词
REVERSE-TIME MIGRATION; EXTRAPOLATION; EQUATIONS; VELOCITY;
D O I
10.1190/GEO2012-0144.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Wavefield extrapolation in pseudoacoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We use the dispersion relation for scalar wave propagation in pseudoacoustic orthorhombic media to model acoustic wavefields. The wavenumber-domain application of the Laplacian operator allows us to propagate the P-waves exclusively, without imposing any conditions on the parameter range of stability. It also allows us to avoid dispersion artifacts commonly associated with evaluating the Laplacian operator in space domain using practical finite-difference stencils. To handle the corresponding space-wavenumber mixed-domain operator, we apply the low-rank approximation approach. Considering the number of parameters necessary to describe orthorhombic anisotropy, the low-rank approach yields space-wavenumber decomposition of the extrapolator operator that is dependent on space location regardless of the parameters, a feature necessary for orthorhombic anisotropy. Numerical experiments that the proposed wavefield extrapolator is accurate and practically free of dispersion. Furthermore, there is no coupling of qSv and qP waves because we use the analytical dispersion solution corresponding to the P-wave.
引用
收藏
页码:C33 / C40
页数:8
相关论文
共 42 条
[1]   Acoustic approximations for processing in transversely isotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 1998, 63 (02) :623-631
[2]   An acoustic wave equation for anisotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 2000, 65 (04) :1239-1250
[3]   An acoustic wave equation for orthorhombic anisotropy [J].
Alkhalifah, T .
GEOPHYSICS, 2003, 68 (04) :1169-1172
[4]   VELOCITY ANALYSIS FOR TRANSVERSELY ISOTROPIC MEDIA [J].
ALKHALIFAH, T ;
TSVANKIN, I .
GEOPHYSICS, 1995, 60 (05) :1550-1566
[5]  
[Anonymous], SEISMOLOGY AZIMUTHAL
[6]  
BALE RA, 2007, 69 ANN INT C EXH EAG
[7]   A brief history of seismic migration [J].
Bednar, JB .
GEOPHYSICS, 2005, 70 (03) :3MJ-20MJ
[8]  
Chapman C, 2004, Fundamentals of seismic wave propagation
[9]  
Chu CL, 2011, GEOPHYSICS, V76, pT113, DOI [10.1190/GEO2011-0069.1, 10.1190/geo2011-0069.1]
[10]   IMAGING REFLECTIONS IN ELLIPTICALLY ANISOTROPIC MEDIA [J].
DELLINGER, J ;
MUIR, F .
GEOPHYSICS, 1988, 53 (12) :1616-1618