Lifting problems and transgression for non-abelian gerbes

被引:14
作者
Nikolaus, Thomas [1 ]
Waldorf, Konrad [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Hausdorff Res Inst Math, D-53115 Bonn, Germany
关键词
Non-abelian gerbe; Non-abelian cohomology; Lie; 2-group; Transgression; Loop space; String structure; BUNDLE GERBES; DIFFERENTIAL GEOMETRY; STRING; 2-GROUP; LOOP SPACE; MODELS;
D O I
10.1016/j.aim.2013.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss lifting and reduction problems for bundles and gerbes in the context of a Lie 2-group. We obtain a geometrical formulation (and a new proof) for the exactness of Breen's long exact sequence in non-abelian cohomology. We use our geometrical formulation in order to define a transgression map in non-abelian cohomology. This transgression map relates the degree one non-abelian cohomology of a smooth manifold (represented by non-abelian gerbes) with the degree zero non-abelian cohomology of the free loop space (represented by principal bundles). We prove several properties for this transgression map. For instance, it reduces - in case of a Lie 2-group with a single object to the ordinary transgression in ordinary cohomology. We describe applications of our results to string manifolds: first, we obtain a new comparison theorem for different notions of string structures. Second, our transgression map establishes a direct relation between string structures and spin structures on the loop space. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 32 条
[1]   Nonabelian bundle gerbes, their differential geometry and gauge theory [J].
Aschieri, P ;
Cantini, L ;
Jurco, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :367-400
[2]   From loop groups to 2-groups [J].
Baez, John C. ;
Stevenson, Danny ;
Crans, Alissa S. ;
Schreiber, Urs .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) :101-135
[3]  
Bartels T., 2004, ARXIVMATH0410328
[4]  
Breen Lawrence., 1990, GROTHENDIECK FESTSCH, VI, P401
[5]  
Brylinski JL., 1993, LOOP SPACES
[6]   Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories [J].
Carey, AL ;
Johnson, S ;
Murray, MK ;
Stevenson, D ;
Wang, BL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) :577-613
[7]  
DEDECKER P, 1966, CR ACAD SCI A MATH, V262, P1298
[8]  
Dedecker P., 1960, Canad. J. Math, V12, P231
[9]   Basic gerbe over non-simply connected compact groups [J].
Gawedzki, K ;
Reis, N .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) :28-55
[10]  
Gomi K, 2001, MATH RES LETT, V8, P25