Adaptive Spatial Regularization Sparse Unmixing Strategy Based on Joint MAP for Hyperspectral Remote Sensing Imagery

被引:25
|
作者
Feng, Ruyi [1 ,2 ,3 ]
Zhong, Yanfei [2 ,3 ]
Zhang, Liangpei [2 ,3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral; joint maximum a posteriori (JMAP); remote sensing; sparse unmixing; spatial regularization; RECONSTRUCTION; RESTORATION; REGRESSION; ALGORITHM;
D O I
10.1109/JSTARS.2016.2570947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse unmixing, as a recently developed spectral unmixing approach, has been successfully applied based on the assumption that the observed image signatures can be expressed in an efficient linear sparse regression with the potentially very large endmember spectral library. To improve the unmixing accuracy, spatial information has been incorporated in the sparse unmixing formulation by adding an appropriate spatial regularization for the hyperspectral remote sensing imagery. However, for the traditional spatial regularization sparse unmixing (SRSU) algorithms, it is a difficult task to set appropriate user-defined regularization parameters in real applications, and this often has a high computational cost. To overcome the difficulty of the regularization parameter selection, the adaptive spatial regularization sparse unmixing (ASRSU) strategy based on the joint maximum a posteriori (JMAP) estimation technique is proposed in this paper. In ASRSU, the SRSU problem is formulated in the framework of JMAP with an appropriate prior model. ASRSU considers the regularization parameters and the abundances jointly by an alternating iterative process, and the relationships between the regularization parameters and the abundances are obtained from the JMAP model. Based on the ASRSU strategy, two ASRSU algorithms are presented: the adaptive total variation spatial regularization sparse unmixing algorithm and the adaptive nonlocal means filtering sparse unmixing algorithm. The experimental results demonstrate that the two proposed ASRSU algorithms based on JMAP can adaptively obtain optimal or near-optimal regularization parameters for the three simulated datasets and the two real hyperspectral remote sensing images.
引用
收藏
页码:5791 / 5805
页数:15
相关论文
共 50 条
  • [21] DIFFERENTIABLE SPARSE UNMIXING BASED ON BREGMAN DIVERGENCE FOR HYPERSPECTRAL MOTE SENSING IMAGERY
    Feng, Ruyi
    Wang, Lizhe
    Zhong, Yanfei
    Zhang, Liangpei
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 598 - 601
  • [22] Region-based Collaborative Sparse Unmixing of Hyperspectral Imagery
    Li, Jiaojiao
    Du, Qian
    Li, Yunsong
    REMOTELY SENSED DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XII, 2016, 9874
  • [23] Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery
    Wang, Ke
    Zhong, Lei
    Zheng, Jiajun
    Zhang, Shaoquan
    Li, Fan
    Deng, Chengzhi
    Cao, Jingjing
    Su, Dingli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1269 - 1285
  • [24] GRAPH LAPLACIAN REGULARIZED SPECTRAL-SPATIAL-SPARSE UNMIXING FOR HYPERSPECTRAL IMAGERY
    Li, Zhi
    Feng, Ruyi
    Shi, Yichang
    Wang, Lizhe
    Zhong, Yanfei
    Zhang, Liangpei
    Zeng, Tieyong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1608 - 1611
  • [25] Sparse hyperspectral unmixing based on smoothed l0 regularization
    Deng, Chengzhi
    Zhang, Shaoquan
    Wang, Shengqian
    Tian, Wei
    Wu, Zhaoming
    INFRARED PHYSICS & TECHNOLOGY, 2014, 67 : 306 - 314
  • [26] SPARSE UNMIXING BASED ON FEATURE PIXELS FOR HYPERSPECTRAL IMAGERY
    Cui, Xinrui
    Wang, Z. Jane
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 21 - 25
  • [27] Sparse Graph Regularization for Hyperspectral Remote Sensing Image Classification
    Xue, Zhaohui
    Du, Peijun
    Li, Jun
    Su, Hongjun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 2351 - 2366
  • [28] NON-LOCAL SPARSE SPECTRAL UNMIXING FOR REMOTE SENSING IMAGERY
    Feng, Ruyi
    Zhong, Yanfei
    Zhang, Liangpei
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [29] Sparse Unmixing for Hyperspectral Imagery via Comprehensive-Learning-Based Particle Swarm Optimization
    Miao, Yapeng
    Yang, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9727 - 9742
  • [30] Hyperspectral Remote Sensing Imagery Generation From RGB Images Based on Joint Discrimination
    Liu, Liqin
    Lei, Sen
    Shi, Zhenwei
    Zhang, Ning
    Zhu, Xinzhong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 7624 - 7636