Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

被引:9
|
作者
Wei, Na [1 ]
Sun, Wan-Tong [1 ]
Meng, Ying-Feng [1 ]
Liu, An-Qi [2 ]
Zhou, Shou-Wei [3 ]
Guo, Ping [1 ]
Fu, Qiang [3 ]
Lv, Xin [4 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
[2] Chuan Qing Drilling Engn Co Ltd, Geol Explorat & Dev Inst, Chengdu 610500, Sichuan, Peoples R China
[3] CNOOC, Beijing 10010, Peoples R China
[4] CNOOC Res Inst, Beijing 10027, Peoples R China
关键词
methane hydrate; molecular dynamics; decomposition; crystal structure; multi-node;
D O I
10.1134/S0036024418050345
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.
引用
收藏
页码:840 / 846
页数:7
相关论文
共 50 条
  • [31] Molecular Dynamics Study on the Growth of Structure I Methane Hydrate in Aqueous Solution of Sodium Chloride
    Tung, Yen-Tien
    Chen, Li-Jen
    Chen, Yan-Ping
    Lin, Shiang-Tai
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (48): : 14115 - 14125
  • [32] Molecular dynamics study on the structure I clathrate-hydrate of methane plus ethane mixture
    Erfan-Niya, Hamid
    Modarress, Hamid
    Zaminpayma, Esmaeil
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 523 - 531
  • [33] MOLECULAR-DYNAMICS STUDIES OF ICE IC AND THE STRUCTURE-I CLATHRATE HYDRATE OF METHANE
    TSE, JS
    KLEIN, ML
    MCDONALD, IR
    JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (21): : 4198 - 4203
  • [34] Effects of carbon nanotube on methane hydrate formation by molecular dynamics simulation
    Li, Tanyu
    Liu, Ni
    Huang, Jialei
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 368
  • [35] Molecular dynamics simulation of sI methane hydrate under compression and tension
    Wang, Qiang
    Tang, Qizhong
    Tian, Sen
    OPEN CHEMISTRY, 2020, 18 (01): : 69 - 76
  • [36] Molecular Dynamic Simulation of Methane Hydrate Decomposition with Polyvinyl Alcohol at Different Concentrations
    Chen Yujuan
    Wang Yanhong
    Fan Shuanshi
    Lang Xuemei
    ACTA CHIMICA SINICA, 2010, 68 (22) : 2253 - 2258
  • [37] Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation
    Liao, Qingyun
    Shi, Bohui
    Li, Sha
    Song, Shangfei
    Chen, Yuchuan
    Zhang, Jinjun
    Yao, Haiyuan
    Li, Qingping
    Gong, Jing
    FUEL, 2021, 297
  • [38] Effects of carbon nanotube on methane hydrate formation by molecular dynamics simulation
    Li, Tanyu
    Liu, Ni
    Huang, Jialei
    Journal of Molecular Liquids, 2022, 368
  • [39] Molecular dynamics simulation of methane hydrate formation on metal surface with oil
    Zi, Mucong
    Chen, Daoyi
    Wu, Guozhong
    CHEMICAL ENGINEERING SCIENCE, 2018, 191 : 253 - 261
  • [40] Effects of Modified Cellulose on Methane Hydrate Decomposition: Experiments and Molecular Dynamics Simulations
    Shao, Zihua
    Sun, Jinsheng
    Wang, Jintang
    Lv, Kaihe
    Liao, Bo
    Wang, Ren
    Jiang, Haiyang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (29) : 9689 - 9697