New Model for Vortex-Induced Vibration of Catenary Riser

被引:0
|
作者
Srinil, Narakorn [1 ,2 ]
Wiercigroch, Marian [1 ]
O'Brien, Patrick [2 ]
Lane, Michael [2 ]
机构
[1] Univ Aberdeen, Kings Coll, Sch Engn, Ctr Appl Dynam Res, Aberdeen AB9 1FX, Scotland
[2] MCS, Aberdeen, Scotland
来源
PROCEEDINGS OF THE EIGHTH (2008) ISOPE PACIFIC/ASIA OFFSHORE MECHANICS SYMPOSIUM: PACOMS-2008 | 2008年
关键词
Catenary riser; vortex-induced vibration; wake oscillator; fluid-structure interaction; reduced-order model; empirical coefficients; uniform current;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This piper presents a new theoretical model capable of predicting the vortex-induced vibration response of a steel catenary riser subject to a steady uniform current. The equations governing riser in-plane/out-of-plane (cross-flow/in-line) motion are based oil a pinned beam-cable model accounting for overall effects of bending, extensibility, sag, inclination and structural nonlinearities. The empirically hydrodynamic model is based on nonlinear wake oscillators describing the fluctuating lift/drag forces. Depending oil the potentially vortex-induced modes and system parameters, a reduced-order fluid-structure interaction model is derived which entails a significantly reduced computational time effort. Parametric results reveal maximum response amplitudes of risers, along with the occurrence of uni-modal lock-in phenomenon.
引用
收藏
页码:129 / +
页数:2
相关论文
共 50 条
  • [1] Reduced-order modelling of vortex-induced vibration of catenary riser
    Srinil, Narakorn
    Wiercigroch, Marian
    O'Brien, Patrick
    OCEAN ENGINEERING, 2009, 36 (17-18) : 1404 - 1414
  • [2] VORTEX-INDUCED VIBRATION OF STEEL CATENARY RISER UNDER VESSEL MOTION
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 2, 2014,
  • [3] Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser
    Zhu, Hongjun
    Hu, Jie
    Gao, Yue
    Zhao, Honglei
    Xu, Wanhai
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 102
  • [4] Effects of vertical and lateral riser-soil interactions on vortex-induced vibration of a steel catenary riser
    Li, Shaojie
    Zhang, Cheng
    Kang, Zhuang
    Ai, Shangmao
    OCEAN ENGINEERING, 2024, 306
  • [5] NUMERICAL PREDICTION OF FATIGUE DAMAGE IN STEEL CATENARY RISER DUE TO VORTEX-INDUCED VIBRATION
    GAO Yun State Key Laboratory of Structural Analysis for Industrial Equipment and Department of Naval Architecture and Faculty of Vehicle Engineering and Mechanics
    JournalofHydrodynamics, 2011, 23 (02) : 154 - 163
  • [6] Experimental Study on the Vortex-induced Vibration of a Catenary Flexible Riser under Sheared Flows
    Zhu, Hongjun
    Hu, Jie
    Zhao, Honglei
    Gao, Yue
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (03) : 283 - 292
  • [7] Dominant parameters for vortex-induced vibration of a steel catenary riser under vessel motion
    Wang, Jungao
    Fu, Shixiao
    Larsen, Carl Martin
    Baarholm, Rolf
    Wu, Jie
    Lie, Halvor
    OCEAN ENGINEERING, 2017, 136 : 260 - 271
  • [8] Numerical Prediction of Fatigue Damage in Steel Catenary Riser Due to Vortex-Induced Vibration
    Yun Gao
    Zhi Zong
    Lei Sun
    Journal of Hydrodynamics, 2011, 23 : 154 - 163
  • [9] NUMERICAL PREDICTION OF FATIGUE DAMAGE IN STEEL CATENARY RISER DUE TO VORTEX-INDUCED VIBRATION
    Gao Yun
    Zong Zhi
    Sun Lei
    JOURNAL OF HYDRODYNAMICS, 2011, 23 (02) : 154 - 163
  • [10] NUMERICAL PREDICTION OF 3-D VORTEX-INDUCED VIBRATION OF CATENARY RISER IN PLANAR AND NON-PLANAR FLOWS
    Ma, Bowen
    Srinil, Narakorn
    PROCEEDINGS OF ASME 2021 40TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING (OMAE2021), VOL 8, 2021,