OPTIMAL RANDOM SEARCH, FRACTIONAL DYNAMICS AND FRACTIONAL CALCULUS

被引:0
|
作者
Zeng, Caibin [1 ]
Chen, YangQuan [2 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Calif, Sch Engn, Mechatron Embedded Syst & Automat MESA Lab, Merced, CA 95343 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4 | 2014年
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; LEVY WALK; PATTERNS; MONKEYS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
What is the most efficient search strategy for the random located target sites subject to the physical and biological constraints? Previous results suggested the Levy flight is the best option to characterize this optimal problem, however; which ignores the understanding and learning abilities of the searcher agents. In the paper we propose the Continuous Time Random Walk (CTRW) optimal search framework and find the optimum for both of search length's and waiting time's distributions. Based on fractional calculus technique, we further derive its master equation to show the mechanism of such complex fractional dynamics. Numerous simulations are provided to illustrate the non-destructive and destructive cases.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Theory of Fractional Calculus
    Altai, Abdulhameed Qahtan Abbood
    IAENG International Journal of Applied Mathematics, 2022, 52 (03)
  • [42] WEYL FRACTIONAL CALCULUS
    RAINA, RK
    KOUL, CL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) : 188 - 192
  • [43] Fractional calculus in pharmacokinetics
    Sopasakis, Pantelis
    Sarimveis, Haralambos
    Macheras, Panos
    Dokoumetzidis, Aristides
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2018, 45 (01) : 107 - 125
  • [44] Complexity and the Fractional Calculus
    Pramukkul, Pensri
    Svenkeson, Adam
    Grigolini, Paolo
    Bologna, Mauro
    West, Bruce
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [45] On fractional Hahn calculus
    Brikshavana, Tanapat
    Sitthiwirattham, Thanin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [46] ZEROS IN FRACTIONAL CALCULUS
    BOER, FJD
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (05): : 386 - 387
  • [47] Fractional calculus for distributions
    Hilfer, R.
    Kleiner, T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2063 - 2123
  • [48] A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration
    Benkhettou, Nadia
    Brito da Cruz, Artur M. C.
    Torres, Delfim F. M.
    SIGNAL PROCESSING, 2015, 107 : 230 - 237
  • [49] THERMODYNAMICS IN FRACTIONAL CALCULUS
    Meilanov, R. P.
    Magomedov, R. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2014, 87 (06) : 1521 - 1531
  • [50] Fractional calculus in the sky
    Baleanu, Dumitru
    Agarwal, Ravi P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)