EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED MARTINGALES WITH APPLICATIONS

被引:70
作者
Bercu, Bernard [1 ]
Touati, Abderrahmen [2 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
[2] Fac Sci Bizerte, Dept Math, Zarzouna 7021, Tunisia
关键词
Exponential inequalities; martingales; autoregressive processes; branching processes;
D O I
10.1214/07-AAP506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose several exponential inequalities for self-normalized martingales similar to those established by De la Pena. The keystone is the introduction of a new notion of random variable heavy on left or right. Applications associated with linear regressions, autoregressive and branching processes are also provided.
引用
收藏
页码:1848 / 1869
页数:22
相关论文
共 24 条
[1]   The median of the poisson distribution [J].
Adell, JA ;
Jodrá, P .
METRIKA, 2005, 61 (03) :337-346
[2]  
[Anonymous], ELECT J PROBAB
[3]   LARGE DEVIATION RATES FOR BRANCHING PROCESSES-I. SINGLE TYPE CASE [J].
Athreya, K. B. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :779-790
[4]  
Athreya K. B., 1972, Branching Processes, DOI DOI 10.1007/978-3-642-65371-1
[5]  
Azuma K., 1967, Tohoku Mathematical J., Second Series, V19, P357, DOI [10.2748/tmj/1178243286, DOI 10.2748/TMJ/1178243286]
[6]  
BARLOW MT, 1986, P LOND MATH SOC, V52, P142
[7]   Large deviations for quadratic forms of stationary Gaussian processes [J].
Bercu, B ;
Gamboa, F ;
Rouault, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (01) :75-90
[8]   On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases [J].
Bercu, B .
BERNOULLI, 2001, 7 (02) :299-316
[9]  
de la Peña VH, 1999, ANN PROBAB, V27, P537
[10]   Self-normalized processes:: Exponential inequalities, moment bounds and iterated logarithm laws [J].
De La Peña, VH ;
Klass, MJ ;
Lai, TL .
ANNALS OF PROBABILITY, 2004, 32 (3A) :1902-1933