LAWS OF RARE EVENTS FOR DETERMINISTIC AND RANDOM DYNAMICAL SYSTEMS

被引:0
作者
Aytac, Hale [1 ]
Freitas, Jorge Milhazes [1 ,2 ]
Vaienti, Sandro [3 ,4 ]
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Ciencias, P-4169007 Porto, Portugal
[3] Aix Marseille Univ, CNRS, CPT, UMR 7332, F-13288 Marseille, France
[4] Univ Toulon & Var, CNRS, CPT, UMR 7332, F-83957 La Garde, France
关键词
Random dynamical systems; extreme values; hitting times statistics; extremal index; HITTING TIME STATISTICS; RETURN TIMES; RECURRENCE; RATES; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is twofold. From one side we study the dichotomy, in terms of the Extremal Index of the possible Extreme Value Laws, when the rare events are centred around periodic or non-periodic points. Then we build a general theory of Extreme Value Laws for randomly perturbed dynamical systems. We also address, in both situations, the convergence of Rare Events Point Processes. Decay of correlations against L-1 observables will play a central role in our investigations.
引用
收藏
页码:8229 / 8278
页数:50
相关论文
共 50 条
  • [31] A SUFFICIENT CONDITION FOR BIFURCATION IN RANDOM DYNAMICAL SYSTEMS
    Chen, Xiaopeng
    Duan, Jinqiao
    Fu, Xinchu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) : 965 - 973
  • [32] WEIGHTED TOPOLOGICAL ENTROPY OF RANDOM DYNAMICAL SYSTEMS
    Yang, Kexiang
    Chen, Ercai
    Lin, Zijie
    Zhou, Xiaoyao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, : 2688 - 2734
  • [33] Iterated invariance principle for random dynamical systems
    Dragicevic, D.
    Hafouta, Y.
    NONLINEARITY, 2025, 38 (03)
  • [34] Koopman Operator Spectrum for Random Dynamical Systems
    Nelida Črnjarić-Žic
    Senka Maćešić
    Igor Mezić
    Journal of Nonlinear Science, 2020, 30 : 2007 - 2056
  • [35] LINEARIZATION AND LOCAL STABILITY OF RANDOM DYNAMICAL SYSTEMS
    Evstigneev, Igor V.
    Pirogov, Sergey A.
    Schenk-Hoppe, Klaus R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 1061 - 1072
  • [36] On fractional Brownian motions and random dynamical systems
    Garrido-Atienza M.J.
    Schmalfuß B.
    SeMA Journal, 2010, 51 (1): : 71 - 78
  • [37] THERMALISATION FOR SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS
    Barrera, Gerardo
    Jara, Milton
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (03) : 1164 - 1208
  • [38] Localized Topological Pressure for Random Dynamical Systems
    Yunping Wang
    Yong Ji
    Cao Zhao
    Journal of Dynamical and Control Systems, 2023, 29 : 1757 - 1773
  • [39] ON THE GLOBAL ATTRACTIVITY OF MONOTONE RANDOM DYNAMICAL SYSTEMS
    Cao, Feng
    Jiang, Jifa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) : 891 - 898
  • [40] Koopman Operator Spectrum for Random Dynamical Systems
    Crnjaric-Zic, Nelida
    Macesic, Senka
    Mezic, Igor
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (05) : 2007 - 2056