Silver Nanoparticles Disrupt Wheat (Triticum aestivum L.) Growth in a Sand Matrix

被引:214
|
作者
Dimkpa, Christian O. [1 ,2 ]
McLean, Joan E. [3 ]
Martineau, Nicole [1 ]
Britt, David W. [2 ]
Haverkamp, Richard [4 ]
Anderson, Anne J. [1 ,2 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Utah State Univ, Dept Biol Engn, Logan, UT 84322 USA
[3] Utah State Univ, Utah Water Res Lab, Logan, UT 84322 USA
[4] Massey Univ, Sch Engn & Adv Technol, Palmerston North 4442, New Zealand
关键词
PSEUDOMONAS-CHLORORAPHIS O6; OXIDATIVE STRESS; SOIL BACTERIUM; SURFACE-CHARGE; HEAVY-METALS; METALLOTHIONEIN; PLANTS; ROOT; RESPONSES; TOXICITY;
D O I
10.1021/es302973y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydroponic plant growth studies indicate that silver nanoparticles (Ag NPs) are phytotoxic. In this work, the phytotoxicity of commercial Ag NPs (10 nm) was evaluated in a sand growth matrix. Both NPs and soluble Ag were recovered from water extracts of the sand after growth of plants challenged with the commercial product; the surface charge of the Ag NPs in this extract was slightly reduced compared to the stock NPs. The Ag NPs reduced the length of shoots and roots of wheat in a dose-dependent manner. Furthermore, 2.5 mg/kg of the NPs increased branching in the roots of wheat (Triticum aestivum L.), thereby affecting plant biomass. Micron-sized (bulk) Ag particles (2.5 mg/kg) as well as Ag ions (63 mu g Ag/kg) equivalent to the amount of soluble Ag in planted sand with Ag NPs (2.5 mg/kg) did not affect plant growth compared to control. In contrast, higher levels of Ag ions (2.5 mg/kg) reduced plant growth to a similar extent as the Ag NPs. Accumulation of Ag was detected in the shoots, indicating an uptake and transport of the metal from the Ag NPs in the sand. Transmision electron microscopy indicated that Ag NPs were present in shoots of plants with roots exposed to the Ag NPs or high levels of Ag ions. Both of these treatments caused oxidative stress in roots, as indicated by accumulation of oxidized glutathione, and induced expression of a gene encoding a metallothionein involved in detoxification by metal ion sequestration. Our findings demonstrate the potential effects of environmental contamination by Ag NPs on the metabolism and growth of food crops in a solid matrix.
引用
收藏
页码:1082 / 1090
页数:9
相关论文
共 50 条
  • [31] Negative Effects of Oxytetracycline on Wheat (Triticum aestivum L.) Growth, Root Activity, Photosynthesis, and Chlorophyll Contents
    Li Zhao-jun
    Xie Xiao-yu
    Zhang Shu-qing
    Liang Yong-chao
    AGRICULTURAL SCIENCES IN CHINA, 2011, 10 (10): : 1545 - 1553
  • [32] Genome-wide association for growth habit in bread wheat (Triticum aestivum L.)
    Gomez-Espejo, Ana L.
    Sansaloni, Carolina P.
    Burgueno, Juan
    Toledo, Fernando H.
    Humberto Reyes-Valdes, M.
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2021, 8 (02):
  • [33] The Influence of Phosphorus Sources on the Growth and Rhizosphere Soil Characteristics of Two Genotypes of Wheat (Triticum aestivum L.)
    Zhan, Xiaoying
    Liu, Wenke
    Hou, Yanyan
    Zhang, Shuxiang
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (09) : 1078 - 1088
  • [34] EFFECTS OF SALT STRESS ON TILLERING NODES TO THE GROWTH OF WINTER WHEAT (TRITICUM AESTIVUM L.)
    Yu Qiong
    Guo Yuan
    Xie Zhixia
    Sun Ke
    Xu Jin
    Yang Ting
    Liu Xiaojing
    PAKISTAN JOURNAL OF BOTANY, 2016, 48 (05) : 1775 - 1782
  • [35] Conferring of Drought and Heat Stress Tolerance in Wheat (Triticum aestivum L.) Genotypes and Their Response to Selenium Nanoparticles Application
    Omar, Ahmad A. A.
    Heikal, Yasmin M. M.
    Zayed, Ehab M. M.
    Shamseldin, Sahar A. M.
    Salama, Yossry E. E.
    Amer, Khaled E. E.
    Basuoni, Mostafa M. M.
    Abd Ellatif, Sawsan
    Mohamed, Azza H. H.
    NANOMATERIALS, 2023, 13 (06)
  • [36] Divergent responses and ecological risks of wheat (Triticum aestivum L.) to cerium oxide nanoparticles in different soil types
    Chen, Dun
    Lin, Zihan
    Ai, Fuxun
    Xia, Yan
    Du, Wenchao
    Yin, Ying
    Guo, Hongyan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 860
  • [37] Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant
    Qu, Baocheng
    Zhao, Hongxia
    Zhou, Jiti
    CHEMOSPHERE, 2010, 79 (05) : 555 - 560
  • [38] Exploration of Piezo Channels in Bread Wheat (Triticum aestivum L.)
    Kaur, Amandeep
    Madhu, Alok
    Sharma, Alok
    Singh, Kashmir
    Upadhyay, Santosh Kumar
    AGRICULTURE-BASEL, 2023, 13 (04):
  • [39] Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars
    Rasheed, Rizwan
    Ashraf, Muhammad Arslan
    Hussain, Iqbal
    Haider, Muhammad Zulqurnain
    Kanwal, Uzma
    Iqbal, Muhammad
    BRAZILIAN JOURNAL OF BOTANY, 2014, 37 (04) : 399 - 406
  • [40] Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves
    Rahman, Shafeeq Ur
    Qi Xuebin
    Kamran, Muhammad
    Yasin, Ghulam
    Cheng, Hefa
    Rehim, Abdur
    Riaz, Luqman
    Rizwan, Muhammad
    Ali, Shafaqat
    Alsahli, Abdulaziz Abdullah
    Alyemeni, Mohammed Nasser
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 148 - 159