Graph partitioning active contours (GPAC) for image segmentation

被引:59
|
作者
Sumengen, B [1 ]
Manjunath, BS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
curve evolution; active contours; image segmentation; pairwise similarity measures; graph partitioning;
D O I
10.1109/TPAMI.2006.76
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce new types of variational segmentation cost functions and associated active contour methods that are based on pairwise similarities or dissimilarities of the pixels. As a solution to a minimization problem, we introduce a new curve evolution framework, the graph partitioning active contours ( GPAC). Using global features, our curve evolution is able to produce results close to the ideal minimization of such cost functions. New and efficient implementation techniques are also introduced in this paper. Our experiments show that GPAC solution is effective on natural images and computationally efficient. Experiments on gray-scale, color, and texture images show promising segmentation results.
引用
收藏
页码:509 / 521
页数:13
相关论文
共 50 条
  • [21] Image segmentation using active contours: Calculus of variations or shape gradients?
    Aubert, G
    Barlaud, M
    Faugeras, O
    Jehan-Besson, S
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (06) : 2128 - 2154
  • [22] An image segmentation technique using nonsubsampled contourlet transform and active contours
    Lingling Fang
    Soft Computing, 2019, 23 : 1823 - 1832
  • [23] Object segmentation using graph cuts based active contours
    Xu, Ning
    Ahuja, Narendra
    Bansal, Ravi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2007, 107 (03) : 210 - 224
  • [24] An investigation of implicit active contours for scientific image segmentation
    Weeratunga, SK
    Kamath, C
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2004, PTS 1 AND 2, 2004, 5308 : 210 - 221
  • [25] Fast and Robust Active Contours Model for Image Segmentation
    Yupeng Li
    Guo Cao
    Qian Yu
    Xuesong Li
    Neural Processing Letters, 2019, 49 : 431 - 452
  • [26] UNDECIMATED HIERARCHICAL ACTIVE CONTOURS FOR OCT IMAGE SEGMENTATION
    Gawish, Ahmed
    Fieguth, Paul
    Marschall, Sebastian
    Bizheva, Kostadinka
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 882 - 886
  • [27] Texture image segmentation using statistical active contours
    Gao, Guowei
    Wang, Huibin
    Wen, Chenglin
    Xu, Lizhong
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [28] Fast and Robust Active Contours Model for Image Segmentation
    Li, Yupeng
    Cao, Guo
    Yu, Qian
    Li, Xuesong
    NEURAL PROCESSING LETTERS, 2019, 49 (02) : 431 - 452
  • [29] GUI for CT Image Segmentation via Active Contours
    Georgieva, Veska M.
    Ermakov, Svetoslav S.
    2016 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2016,
  • [30] Adaptive diffusion flow active contours for image segmentation
    Wu, Yuwei
    Wang, Yuanquan
    Jia, Yunde
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (10) : 1421 - 1435