Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Porphyrin-polymer complexes in model photosensitized processes

被引:20
作者
Aksenova, N. A. [1 ]
Oles, T. [2 ]
Sarna, T. [2 ]
Glagolev, N. N. [1 ]
Chernjak, A. V. [3 ]
Volkov, V. I. [3 ]
Kotova, S. L. [1 ]
Melik-Nubarov, N. S. [4 ]
Solovieva, A. B. [1 ]
机构
[1] RAS, NN Semenov Chem Phys Inst, Moscow 119991, Russia
[2] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Krakow, Poland
[3] RAS, Inst Problems Chem Phys, Chernogolovka 142432, Russia
[4] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
关键词
INTERACTIONS LIPFN-PVP; PEO BLOCK-COPOLYMERS; PHOTOCATALYTIC ACTIVITY; MOLECULAR-OXYGEN; SINGLET OXYGEN; RATE CONSTANTS; EFFICACY; GENERATION; MICELLES; H-1-NMR;
D O I
10.1134/S1054660X12100015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have studied the effect of amphiphilic polymers with different structure (polyvinylpyrrolidone, polyethyleneoxide and a triblock copolymer of ethylene- and propyleneoxide-(Pluronic F127)) on the photoactivity of a hematoporphyrin derivative (dimegin). It has been shown that such polymers can cause a considerable increase in the porphyrin photosensitizer (PPS) activity both in the process of singlet oxygen photogeneration and in the reaction of a substrate photooxidation in D2O and water. Among the studied polymers, polyvinylpyrrolidone appeared to have a most significant influence onto the photoactivity of dimegin. We attribute the observed effect of the amphiphilic polymers on the photoactivity of dimegin to the presence of polymer-porphyrin interactions resulting in the porphyrin disaggregation in aqueous phase. Using 1H NMR spectroscopy, we have found that dimegin binds to the polymers via the PPS interaction mainly with the hydrophobic fragments of polymeric macromolecules. However, in the case of polyvinylpyrrolidone we observed also PPS interactions with the hydrophilic fragments of macromolecules.
引用
收藏
页码:1642 / 1649
页数:8
相关论文
共 46 条
[31]  
MOAN J, 1984, PHOTOCHEM PHOTOBIOL, V39, P445
[32]   Zinc-induced Structural Effects Enhance Oxygen Consumption and Superoxide Generation in Synthetic Pheomelanins on UVA/Visible Light Irradiation† [J].
Panzella, Lucia ;
Szewczyk, Grzegorz ;
d'Ischia, Marco ;
Napolitano, Alessandra ;
Sarna, Tadeusz .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2010, 86 (04) :757-764
[33]   Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy [J].
Regehly, M. ;
Greish, K. ;
Rancan, F. ;
Maeda, H. ;
Boehm, F. ;
Roeder, B. .
BIOCONJUGATE CHEMISTRY, 2007, 18 (02) :494-499
[34]   Influence of the polymer molecular weight on the surfactant-polymer interactions: LiPFN-PVP and SDS-PVP systems [J].
Sesta, B ;
DAprano, A ;
Segre, AL ;
Proietti, N .
LANGMUIR, 1997, 13 (25) :6612-6617
[35]   H-1 NMR, surface tension, viscosity, and volume evidence of micelle-polymer hydrophobic interactions: LiPFN-PVP system [J].
Sesta, B ;
Segre, AL ;
DAprano, A ;
Proietti, N .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (02) :198-204
[36]   Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration [J].
Sezgin, Zerrin ;
Yuksel, Nilufer ;
Baykara, Tamer .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 332 (1-2) :161-167
[37]   Combined Laser and Photodynamic Treatment in Extensive Purulent Wounds [J].
Solovieva, A. B. ;
Tolstih, P. I. ;
Melik-Nubarov, N. S. ;
Zhientaev, T. M. ;
Kuleshov, I. G. ;
Glagolev, N. N. ;
Ivanov, A. V. ;
Karahanov, G. I. ;
Tolstih, M. P. ;
Timashev, P. S. .
LASER PHYSICS, 2010, 20 (05) :1068-1073
[38]   Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Pluronic influence on photocatalytic activity of porphyrins [J].
Solovieva, A. B. ;
Melik-Nubarov, N. S. ;
Zhiyentayev, T. M. ;
Tolstih, P. I. ;
Kuleshov, I. I. ;
Aksenova, N. A. ;
Litmanovich, E. A. ;
Glagolev, N. N. ;
Timofeeva, V. A. ;
Ivanov, A. V. .
LASER PHYSICS, 2009, 19 (04) :817-824
[39]  
Solovieva A. B., 2003, RUSS CHEM REV, V72, P965
[40]  
Solovieva A B, 2007, Patent, Patent No. [RU 2314806, 2314806]