Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces

被引:10
作者
Cheskidov, A. [1 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; REGULARITY;
D O I
10.1063/1.4765332
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the incompressible Navier-Stokes equations with a fractional Laplacian and prove the existence of discontinuous Leray-Hopf solutions in the largest critical space with arbitrarily small initial data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765332]
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[3]   Ill-posedness of the Navier-Stokes equations in a critical space in 3D [J].
Bourgain, Jean ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2233-2247
[4]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[5]   ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES [J].
Cheskidov, A. ;
Shvydkoy, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) :1059-1067
[6]  
Cheskidov A, 2010, ARCH RATION MECH AN, V195, P159, DOI 10.1007/s00205-009-0265-2
[7]  
Cheskidov A, 1944, ARXIVABS11021944
[8]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[9]  
Foias C, 1962, REND SEMIN MAT U PAD, V32, P261
[10]  
Grafakos L., 2008, GRADUATE TEXTS MATH, V249