Scaling in small-world resistor networks

被引:34
作者
Korniss, G
Hastings, MB
Bassler, KE
Berryman, MJ
Kozma, B
Abbott, D
机构
[1] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Univ Houston, Dept Phys, Houston, TX 77204 USA
[5] Univ Adelaide, Ctr Biomed Engn, Adelaide, SA 5005, Australia
[6] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
small-world model; resistor networks; scaling;
D O I
10.1016/j.physleta.2005.09.081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l(-alpha). In this case we find that the average effective system resistance diverges for any non-zero value of alpha. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 330
页数:7
相关论文
共 71 条
[1]   RESISTANCE BETWEEN ADJACENT POINTS OF LIEBMAN MESH [J].
AITCHISON, RE .
AMERICAN JOURNAL OF PHYSICS, 1964, 32 (07) :566-&
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[4]   Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs [J].
Andrade, JS ;
Herrmann, HJ ;
Andrade, RFS ;
da Silva, LR .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[5]   Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency [J].
Anghel, M ;
Toroczkai, Z ;
Bassler, KE ;
Korniss, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4
[6]  
[Anonymous], EUR J OPER RES
[7]   Effect of congestion costs on shortest paths through complex networks [J].
Ashton, DJ ;
Jarrett, TC ;
Johnson, NF .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[8]  
Barabasi A.-L., 1995, Fractal Concepts in Surface Growth, DOI DOI 10.1017/CBO9780511599798
[9]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[10]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4