Soft Sensor Modelling Based on Mutual Information Variable Selection and Partial Least Squares
被引:0
|
作者:
Li, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
Li, Qi
[1
]
Du, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
Du, Xiaodong
[1
]
Liu, Wenya
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
Liu, Wenya
[1
]
Ba, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Sci Test & Control Technol Inst, Key Lab Underwater Sci Test & Control Technol, Dalian 116013, Peoples R ChinaDalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
Ba, Wei
[2
]
机构:
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[2] Dalian Sci Test & Control Technol Inst, Key Lab Underwater Sci Test & Control Technol, Dalian 116013, Peoples R China
来源:
2017 CHINESE AUTOMATION CONGRESS (CAC)
|
2017年
基金:
中国国家自然科学基金;
关键词:
mutual information;
variable selection;
partial least squares;
soft sensor;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
To remove redundant variables and resolve the high correlation problem of soft sensor modelling, this paper proposed an efficient mutual information(MI) based partial least squares(PLS) method. First, we use MI criterion to sort the variables in a descending order according to their importance. Then the linearity between process variables and quality variables is tested through F test. If there is a strong linearity between them, then use PLS method to build regression models between different number of process variables and quality variables and find the final selected variables according to the minimum root mean square error(RMSE). The proposed method can enhance the robustness and interpretability of the soft sensor model, reduce the amount of calculation, and improve the precision of prediction. The efficiency of the proposed method is demonstrated through two case studies by comparing with other four variable selection methods.
机构:
East China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
Lin, Weilu
Hang, Haifeng
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
Hang, Haifeng
Zhuang, Yingping
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
Zhuang, Yingping
Zhang, Siliang
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China