Soft Sensor Modelling Based on Mutual Information Variable Selection and Partial Least Squares

被引:0
|
作者
Li, Qi [1 ]
Du, Xiaodong [1 ]
Liu, Wenya [1 ]
Ba, Wei [2 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[2] Dalian Sci Test & Control Technol Inst, Key Lab Underwater Sci Test & Control Technol, Dalian 116013, Peoples R China
基金
中国国家自然科学基金;
关键词
mutual information; variable selection; partial least squares; soft sensor;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To remove redundant variables and resolve the high correlation problem of soft sensor modelling, this paper proposed an efficient mutual information(MI) based partial least squares(PLS) method. First, we use MI criterion to sort the variables in a descending order according to their importance. Then the linearity between process variables and quality variables is tested through F test. If there is a strong linearity between them, then use PLS method to build regression models between different number of process variables and quality variables and find the final selected variables according to the minimum root mean square error(RMSE). The proposed method can enhance the robustness and interpretability of the soft sensor model, reduce the amount of calculation, and improve the precision of prediction. The efficiency of the proposed method is demonstrated through two case studies by comparing with other four variable selection methods.
引用
收藏
页码:3649 / 3654
页数:6
相关论文
共 50 条
  • [22] Soft Sensor for Nonlinear Processes Based on Ensemble Partial Least Squares with Adaptive Localization
    Shao, Weiming
    Tian, Xuemin
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 737 - 742
  • [23] An Adaptive Soft Sensor Based on Multi-State Partial Least Squares Regression
    Guo Wei
    Pan Tianhong
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1892 - 1896
  • [24] Load Forecasting Based on Partial Mutual Information and Multiple Kernel Least Squares Vector Regression
    Yuan Conggui
    Zhu Cailian
    Xu Shuqiong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 7900 - 7905
  • [25] A variant of sparse partial least squares for variable selection and data exploration
    Hunt, Megan J. Olson
    Weissfeld, Lisa
    Boudreau, Robert M.
    Aizenstein, Howard
    Newman, Anne B.
    Simonsick, Eleanor M.
    Van Domelen, Dane R.
    Thomas, Fridtjof
    Yaffe, Kristine
    Rosano, Caterina
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [26] On some aspects of variable selection for partial least squares regression models
    Roy, Partha Pratim
    Roy, Kunal
    QSAR & COMBINATORIAL SCIENCE, 2008, 27 (03): : 302 - 313
  • [27] Use of Partial Least Squares Regression for Variable Selection and Quality Prediction
    Jun, Chi-Hyuck
    Lee, Sang-Ho
    Park, Hae-Sang
    Lee, Jeong-Hwa
    CIE: 2009 INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2009, : 1302 - 1307
  • [28] Partial least squares regression with conditional orthogonal projection for variable selection
    Wang, Jiangchuan
    Ma, Haiqiang
    Li, Chuanquan
    Liu, Qing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (12) : 5752 - 5763
  • [29] Prediction of Placental Barrier Permeability: A Model Based on Partial Least Squares Variable Selection Procedure
    Zhang, Yong-Hong
    Xia, Zhi-Ning
    Yan, Li
    Liu, Shu-Shen
    MOLECULES, 2015, 20 (05): : 8270 - 8286
  • [30] Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression
    Westad, F
    Martens, H
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2000, 8 (02) : 117 - 124