Comparison of near infrared and Raman spectroscopies for determining the cetane index of hydrogenated gas oil

被引:1
作者
Velvarska, Romana [1 ]
Fiedlerova, Marcela [1 ]
Kadlec, David [1 ]
Stepanek, Kamil [1 ]
机构
[1] UniCRE Unipetrol Ctr Res & Educ Inc, Areal Chempk 2838,Zaluzi 1, Litvinov 43670, Czech Republic
关键词
NIR; Raman spectroscopy; Cetane index; Hydrogenated gas oil; PLS algorithm; NUCLEAR-MAGNETIC-RESONANCE; SPECTROMETRY; NIR; PLS; FERMENTATION;
D O I
10.1007/s40090-020-00216-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The standard method (ISO 4264) for determining the cetane index of hydrogenated gas oil is time-consuming and expensive for routine laboratory tests. Conversely, near infrared (NIR) and Raman spectroscopies are high-speed and cost-effective techniques. In this study, these tools were used to create two models for the determination of the hydrogenated gas oil cetane index. First, ISO 4264 was used to measure the cetane index for 45 real samples used as calibration standards. Then, to create the models, the same samples were measured using NIR and Raman spectroscopies. The model values were then correlated against the ISO values. The Raman model predicted cetane index values with a maximum absolute difference of 1.2 from the ISO, while the NIR model showed a difference of 0.3. Finally, 10 additional real samples were used as validation standards to compare the models. The NIR model predicted values with better cross-validation error and lower absolute differences (NIR 0.334, Raman 0.654) from the ISO values compared to the Raman model. Thus, the NIR model is a fast and accurate method that can partially substitute for ISO 4264 when performing routine laboratory tasks.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 19 条
[1]   Models to improve the non-destructive analysis of persimmon fruit properties by VIS/NIR spectrometry [J].
Altieri, Giuseppe ;
Genovese, Francesco ;
Tauriello, Antonella ;
Di Renzo, Giovanni Carlo .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2017, 97 (15) :5302-5310
[2]  
[Anonymous], 1998, PETR PROD DET IGN QU
[3]  
[Anonymous], 2007, PETR PROD CALC CET I
[4]   MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends [J].
Camara, Anne B. F. ;
de Carvalho, Luciene S. ;
de Morais, Camilo L. M. ;
de Lima, Leomir A. S. ;
de Araujo, Heloise O. M. ;
de Oliveira, Fernanda M. ;
de Lima, Kassio M. G. .
FUEL, 2017, 210 :497-506
[5]   Application of Near-Infrared Spectroscopy for Monitoring and Control of Cell Culture and Fermentation [J].
Cervera, Albert E. ;
Petersen, Nanna ;
Lantz, Anna Eliasson ;
Larsen, Anders ;
Gernaey, Krist V. .
BIOTECHNOLOGY PROGRESS, 2009, 25 (06) :1561-1581
[6]   Predicting fuel research octane number using Fourier-transform infrared absorption spectra of neat hydrocarbons [J].
Daly, Shane R. ;
Niemeyer, Kyle E. ;
Cannella, William J. ;
Hagen, Christopher L. .
FUEL, 2016, 183 :359-365
[7]   Predicting Cetane Index, Flash Point, and Content Sulfur of Diesel Biodiesel Blend Using an Artificial Neural Network Model [J].
de Oliveira, Fernanda M. ;
de Carvalho, Luciene S. ;
Teixeira, Leonardo S. G. ;
Fontes, Cristiano H. ;
Lima, Kassio M. G. ;
Camara, Anne B. F. ;
Araujo, Heloise O. M. ;
Sales, Rafael V. .
ENERGY & FUELS, 2017, 31 (04) :3913-3920
[8]   Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry [J].
Ignat, T. ;
Schmilovitch, Z. ;
Fefoldi, J. ;
Steiner, B. ;
Alkalai-Tuvia, S. .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2012, 74 :91-99
[9]   Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks [J].
Jameel, Abdul Gani Abdul ;
Van Oudenhoven, Vincent ;
Emwas, Abdul-Hamid ;
Sarathy, S. Mani .
ENERGY & FUELS, 2018, 32 (05) :6309-6329
[10]   Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression [J].
Jameel, Abdul Gani Abdul ;
Naser, Nimal ;
Emwas, Abdul-Hamid ;
Dooley, Stephen ;
Sarathy, S. Mani .
ENERGY & FUELS, 2016, 30 (11) :9819-9835