Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes

被引:39
作者
Chen, Aiping [1 ]
Zhang, Wenrui [1 ]
Khatkatay, Fauzia [1 ]
Su, Qing [1 ]
Tsai, Chen-Fong [1 ]
Chen, Li [1 ]
Jia, Q. X. [2 ]
MacManus-Driscoll, Judith L. [3 ]
Wang, H. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
LOW-FIELD MAGNETORESISTANCE; THIN-FILMS; SYSTEM;
D O I
10.1063/1.4794899
中图分类号
O59 [应用物理学];
学科分类号
摘要
A unique quasi-one-dimensionally channeled nanomaze structure has been self-assembled in the (La0.7Sr0.3MnO3)(1-x):(ZnO)(x) vertically aligned nanocomposites (VANs). Significantly enhanced magnetotransport properties have been achieved by tuning the ZnO composition x. The heteroepitaxial VAN thin films, free of large angle grain boundaries, exhibit a maximum low-field magnetoresistance (LFMR) of 75% (20K and 1 T). The enhanced LFMR close to the percolation threshold is attributed to the spin-polarized tunneling through the ferromagnetic/insulating/ferromagnetic vertical sandwiches in the nanomazes. This study suggests that the phase boundary in the nanomaze structure is an alternative approach to produce decoupled ferromagnetic domains and thus to achieve enhanced magnetoresistance. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794899]
引用
收藏
页数:4
相关论文
共 20 条
  • [1] La0.7Ca0.3MnO3/Mn3O4 composites: Does an insulating secondary phase always enhance the low field magnetoresistance of manganites?
    Bhame, S. D.
    Fagnard, J. -F.
    Pekala, M.
    Vanderbemden, P.
    Vertruyen, B.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
  • [2] Chen A. P., ACTA MAT IN PRESS
  • [3] A New Class of Room-Temperature Multiferroic Thin Films with Bismuth-Based Supercell Structure
    Chen, Aiping
    Zhou, Honghui
    Bi, Zhenxing
    Zhu, Yuanyuan
    Luo, Zhiping
    Bayraktaroglu, Adrian
    Phillips, Jamie
    Choi, Eun-Mi
    MacManus-Driscoll, Judith L.
    Pennycook, Stephen J.
    Narayan, Jagdish
    Jia, Quanxi
    Zhang, Xinghang
    Wang, Haiyan
    [J]. ADVANCED MATERIALS, 2013, 25 (07) : 1028 - 1032
  • [4] Tilted Aligned Epitaxial La0.7Sr0.3MnO3 Nanocolumnar Films with Enhanced Low-Field Magnetoresistance by Pulsed Laser Oblique-Angle Deposition
    Chen, Aiping
    Bi, Zhenxing
    Tsai, Chen-Fong
    Chen, Li
    Su, Qing
    Zhang, Xinghang
    Wang, Haiyan
    [J]. CRYSTAL GROWTH & DESIGN, 2011, 11 (12) : 5405 - 5409
  • [5] Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films
    Chen, Aiping
    Bi, Zhenxing
    Tsai, Chen-Fong
    Lee, JoonHwan
    Su, Qing
    Zhang, Xinghang
    Jia, Quanxi
    MacManus-Driscoll, Judith L.
    Wang, Haiyan
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) : 2423 - 2429
  • [6] Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films
    Chen, Aiping
    Bi, Zhenxing
    Hazariwala, Harshad
    Zhang, Xinghang
    Su, Qing
    Chen, Li
    Jia, Quanxi
    MacManus-Driscoll, Judith L.
    Wang, Haiyan
    [J]. NANOTECHNOLOGY, 2011, 22 (31)
  • [7] Tunnel-type GMR in Co-Al-O insulated granular system - Its oxygen-concentration dependence
    Fujimori, H
    Mitani, S
    Ohnuma, S
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 156 (1-3) : 311 - 314
  • [8] Electrical transport and magnetoresistance in La2/3Ca1/3MnO3/BaZrO3 composites
    Gao, Ling
    Bai, Lifeng
    Li, Chengshan
    Liu, Xianghong
    Wu, Zhanwen
    Zheng, Dongning
    Lu, Yafeng
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 522 : 25 - 29
  • [9] Nano-chessboard superlattices formed by spontaneous phase separation in oxides
    Guiton, Beth S.
    Davies, Peter K.
    [J]. NATURE MATERIALS, 2007, 6 (08) : 586 - 591
  • [10] Lebedev OI, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.104421