Transient dynamics in dense colloidal suspensions under shear: shear rate dependence

被引:47
作者
Laurati, M. [1 ]
Mutch, K. J. [1 ]
Koumakis, N. [2 ,3 ]
Zausch, J. [4 ]
Amann, C. P. [5 ]
Schofield, A. B. [6 ]
Petekidis, G. [2 ,3 ]
Brady, J. F. [7 ]
Horbach, J.
Fuchs, M. [5 ]
Egelhaaf, S. U. [1 ]
机构
[1] Univ Dusseldorf, IPkM, Condensed Matter Phys Lab, D-40225 Dusseldorf, Germany
[2] Univ Crete, FORTH IESL, Iraklion 71110, Greece
[3] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Greece
[4] Fraunhofer ITWM, D-67663 Kaiserslautern, Germany
[5] Univ Constance, Fachbereich Phys, D-78457 Constance, Germany
[6] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[7] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
MODE-COUPLING THEORY; BROWNIAN DYNAMICS; GLASS-TRANSITION; HARD-SPHERE; NONLINEAR RHEOLOGY; POLYMER-SOLUTIONS; START-UP; SOFT; PARTICLES; FLOW;
D O I
10.1088/0953-8984/24/46/464104
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A combination of confocal microscopy and rheology experiments, Brownian dynamics (BD) and molecular dynamics (MD) simulations and mode coupling theory (MCT) have been applied in order to investigate the effect of shear rate on the transient dynamics and stress-strain relations in supercooled and glassy systems under shear. Immediately after shear is switched on, the microscopic dynamics display super-diffusion and the macroscopic rheology a stress overshoot, which become more pronounced with increasing shear rate. MCT relates both to negative sections of the generalized shear modulus, which grow with increasing shear rate. When the inverse shear rate becomes much smaller than the structural relaxation time of the quiescent system, relaxation through Brownian motion becomes less important. In this regime, larger stresses are accumulated before the system yields and the transition from localization to flow occurs earlier and more abruptly.
引用
收藏
页数:13
相关论文
共 63 条
[1]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/nmat2404, 10.1038/NMAT2404]
[2]  
Amann C, 2012, J RHEOL UNPUB
[3]  
[Anonymous], 2009, INT SERIES MONOGRAPH
[4]   Slip and Flow of Hard-Sphere Colloidal Glasses [J].
Ballesta, P. ;
Besseling, R. ;
Isa, L. ;
Petekidis, G. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[5]   Three-dimensional imaging of colloidal glasses under steady shear [J].
Besseling, R. ;
Weeks, Eric R. ;
Schofield, A. B. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (02)
[6]   Shear Banding and Flow-Concentration Coupling in Colloidal Glasses [J].
Besseling, R. ;
Isa, L. ;
Ballesta, P. ;
Petekidis, G. ;
Cates, M. E. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[7]   Quantitative imaging of colloidal flows [J].
Besseling, Rut ;
Isa, Lucio ;
Weeks, Eric R. ;
Poon, Wilson C. K. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 146 (1-2) :1-17
[8]   Dense colloidal suspensions under time-dependent shear [J].
Brader, J. M. ;
Voigtmann, Th. ;
Cates, M. E. ;
Fuchs, M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[9]   Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and Fourier transform rheology experiments [J].
Brader, J. M. ;
Siebenbuerger, M. ;
Ballauff, M. ;
Reinheimer, K. ;
Wilhelm, M. ;
Frey, S. J. ;
Weysser, F. ;
Fuchs, M. .
PHYSICAL REVIEW E, 2010, 82 (06)
[10]   First-principles constitutive equation for suspension rheology [J].
Brader, J. M. ;
Cates, M. E. ;
Fuchs, M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)