Unique continuation and an inverse problem for hyperbolic equations across a general hypersurface

被引:6
作者
Amirov, A [1 ]
Yamamoto, M [1 ]
机构
[1] Zonguldak Karaelmas Univ, Dept Math, TR-67100 Zonguldak, Turkey
来源
SECOND INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS: RECENT THEORETICAL DEVELOPMENTS AND NUMERICAL APPROACHES, 2004 | 2005年 / 12卷
关键词
D O I
10.1088/1742-6596/12/1/001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a hyperbolic equation p(x,t)partial derivative(2)(t)u(x,t) = Delta u(x,t) + Sigma(n)(k=1) qk(x, t)partial derivative ku+ qn+l (x, t)partial derivative(t)u + r(x, t)u in R-n x R with p is an element of C-1 and q(1)...... q(n+l), r is an element of L-infinity. Let r be a part of the boundary of a domain and let v(x) be the inward unit normal vector to Gamma at x. Then we prove the conditional stability in the unique continuation near a point x(0) across Gamma if del P(x(0), t) (.) v(x(0)) < 0 and the radius of the osculating ball at x(0) is large for -del p(x(0),t) (.) v(x(0)). Next we prove the conditional stability in the inverse problem of determining a coefficient r(x) from Cauchy data on Gamma over a time interval. The key is a Carleman estimate in level sets of paraboloid shapes.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 31 条
[11]  
ELLER M, 2002, NONLINEAR PARTIAL DI, V14, P329
[12]  
Hormander, 1963, GRUNDL MATH WISS, V116
[13]  
HORMANDER L, 1997, PROG NONLIN, V32, P179
[14]   An inverse problem for the dynamical Lame system with two sets of boundary data [J].
Imanuvilov, O ;
Isakov, V ;
Yamamoto, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (09) :1366-1382
[15]  
Imanuvilov OU, 2001, COMMUN PART DIFF EQ, V26, P1409
[16]   Carleman estimates for the non-stationary Lame system and the application to an inverse problem [J].
Imanuvilov, OY ;
Yamamoto, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (01) :1-56
[17]   Determination of a coefficient in an acoustic equation with a single measurement [J].
Imanuvilov, OY ;
Yamamoto, M .
INVERSE PROBLEMS, 2003, 19 (01) :157-171
[18]   Global Lipschitz stability in an inverse hyperbolic problem by interior observations [J].
Imanuvilov, OY ;
Yamamoto, M .
INVERSE PROBLEMS, 2001, 17 (04) :717-728
[19]   CARLEMAN TYPE ESTIMATES IN AN ANISOTROPIC CASE AND APPLICATIONS [J].
ISAKOV, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :217-238
[20]  
Isakov V., 2006, Inverse Problems for Partial Differential Equations