Unique continuation and an inverse problem for hyperbolic equations across a general hypersurface

被引:6
作者
Amirov, A [1 ]
Yamamoto, M [1 ]
机构
[1] Zonguldak Karaelmas Univ, Dept Math, TR-67100 Zonguldak, Turkey
来源
SECOND INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS: RECENT THEORETICAL DEVELOPMENTS AND NUMERICAL APPROACHES, 2004 | 2005年 / 12卷
关键词
D O I
10.1088/1742-6596/12/1/001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a hyperbolic equation p(x,t)partial derivative(2)(t)u(x,t) = Delta u(x,t) + Sigma(n)(k=1) qk(x, t)partial derivative ku+ qn+l (x, t)partial derivative(t)u + r(x, t)u in R-n x R with p is an element of C-1 and q(1)...... q(n+l), r is an element of L-infinity. Let r be a part of the boundary of a domain and let v(x) be the inward unit normal vector to Gamma at x. Then we prove the conditional stability in the unique continuation near a point x(0) across Gamma if del P(x(0), t) (.) v(x(0)) < 0 and the radius of the osculating ball at x(0) is large for -del p(x(0),t) (.) v(x(0)). Next we prove the conditional stability in the inverse problem of determining a coefficient r(x) from Cauchy data on Gamma over a time interval. The key is a Carleman estimate in level sets of paraboloid shapes.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 31 条
[1]  
ALINHAC S, 1983, ANN MATH, V117, P77
[2]  
AMIROV A, 1988, THESIS
[3]  
Amirov A. K., 2001, INTEGRAL GEOMETRY IN
[4]  
Amirov AK, 2001, DOKL MATH, V64, P22
[5]  
[Anonymous], 1986, AM MATH SOC, DOI DOI 10.1090/S0894-0347-1992-1124979-1
[6]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[7]   Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation [J].
Bellassoued, M .
INVERSE PROBLEMS, 2004, 20 (04) :1033-1052
[8]  
BELLASSOUED M, IN PRESS J MATH PURE
[9]  
Bukhgeim A. L., 1981, SOV MATH DOKL, V24, P244
[10]  
Bukhgeim A. L., 2000, INTRO THEORY INVERSE