Double-pulsed PECVD synthesis of hydrogenated nanocrystalline silicon thin films

被引:0
作者
Fields, J. D. [1 ]
Gallon, J. B. [2 ]
Hu, J. [2 ]
Valentich, Ed [2 ]
Taylor, P. C. [1 ]
Madan, A. [2 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] MVSyst Inc, Golden, CO USA
来源
THIN FILM SOLAR TECHNOLOGY IV | 2012年 / 8470卷
基金
美国国家科学基金会;
关键词
Silicon; thin film; microstructural evolution; pulsed PECVD; mobility; CHEMICAL-VAPOR-DEPOSITION; POLYCRYSTALLINE SILICON; LOW-TEMPERATURE; MICROCRYSTALLINE SILICON; SOLAR-CELLS; GAS-MIXTURE; TRANSISTORS; PLASMA; LASER; GROWTH;
D O I
10.1117/12.930236
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Our efforts focus on developing a method to produce hydrogenated nanocrystalline silicon (nc-Si:H) with larger crystallites to enhance carrier transport properties. A new PECVD methodology, called double pulsed PECVD (DP-PECVD), employs alternating low frequency and high frequency discharge sub-cycles to sequentially grow and etch the evolving film, respectively. This confers enhanced process control compared to conventional methods, and provides a pathway to achieve our goal of enhanced carrier mobility. Preliminary results demonstrate nc-Si: H films possessing grains as large as 29 nm, with (220) preferred orientation, which is suitable for solar cell applications. Reactions between plasma species in a SiF4:H-2:SiH4 glow discharge, which expectedly contribute to evolution of large grains, are also discussed. Our findings suggest the double pulse strategy is a valuable method for manipulating the microstructural evolution of PECVD grown thin film materials.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Laser processing of amorphous silicon for large-area polysilicon imagers [J].
Boyce, JB ;
Fulks, RT ;
Ho, J ;
Lau, R ;
Lu, JP ;
Mei, P ;
Street, RA ;
Van Schuylenbergh, KF ;
Wang, Y .
THIN SOLID FILMS, 2001, 383 (1-2) :137-142
[2]   POLYCRYSTALLINE SILICON THIN-FILM TRANSISTORS [J].
BROTHERTON, SD .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (06) :721-738
[3]   From amorphous to microcrystalline silicon: Moving from one to the other by halogenated silicon plasma chemistry [J].
Bruno, Giovanni ;
Capezzuto, Pio ;
Giangregorio, Maria M. ;
Bianco, Giuseppe V. ;
Losurdo, Maria .
PHILOSOPHICAL MAGAZINE, 2009, 89 (28-30) :2469-2489
[4]   Nanocrystalline silicon thin film transistors [J].
Cheng, IC ;
Wagner, S .
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2003, 150 (04) :339-344
[5]   Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150°C [J].
Cheng, IC ;
Wagner, S .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :440-442
[6]   Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate [J].
Fonrodona, M ;
Soler, D ;
Escarré, J ;
Villar, F ;
Bertomeu, J ;
Andreu, J ;
Saboundji, A ;
Coulon, N ;
Mohammed-Brahim, I .
THIN SOLID FILMS, 2006, 501 (1-2) :303-306
[7]   Laser crystallized polysilicon TFT's using LPCVD, PECVD and PVD silicon channel materials - A comparative study [J].
Fulks, RT ;
Boyce, JB ;
Ho, J ;
Davis, GA ;
Aebi, V .
AMORPHOUS AND HETEROGENEOUS SILICON THIN FILMS: FUNDAMENTALS TO DEVICES-1999, 1999, 557 :623-628
[8]   High-performance thin-film transistors fabricated using excimer laser processing and grain engineering [J].
Giust, GK ;
Sigmon, TW .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (04) :925-932
[9]  
Guha S., 2005, MICROCRYSTALLINE SIL, P1
[10]   Morphology and electronic transport of polycrystalline silicon films deposited by SiF4/H2 at a substrate temperature of 200°C [J].
Hazra, S ;
Mukhopadhyay, S ;
Ray, S .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2002, 20 (03) :790-796