Congruences modulo powers of 3 for 2-color partition triples

被引:1
作者
Tang, Dazhao [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Congruences; 2-Color partition triples;
D O I
10.1007/s10998-018-0258-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let pk, 3( n) enumerate the number of 2- color partition triples of n where one of the colors appears only in parts that are multiples of k. In this paper, we prove several infinite families of congruences modulo powers of 3 for pk, 3( n) with k = 1, 3, and 9. For example, for all integers n = 0 and a = 1, we prove that p3,3 3an + 3a + 1 2 = 0 ( mod 3a+ 1) and p3,3 3a+ 1n + 5 x 3a + 1 2 = 0 ( mod 3a+ 4).
引用
收藏
页码:254 / 266
页数:13
相关论文
共 5 条