A RANDOM COCYCLE WITH NON HOLDER LYAPUNOV EXPONENT

被引:9
作者
Duarte, Pedro [1 ,2 ]
Klein, Silvius [3 ]
Santos, Manuel [4 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Edificio C6,Piso 2, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CMAFCIO, Edificio C6,Piso 2, P-1749016 Lisbon, Portugal
[3] Pontificia Univ Catolica Rio De Janeiro PUC Rio, Dept Matemat, Rua Marques Sao Vicente 225, BR-22430060 Rio De Janeiro, RJ, Brazil
[4] Univ Lisbon, Inst Super Tecn, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Random linear cocycle; Lyapunov exponent; discrete Schrodinger operator; integrated density of states; Thouless formula; INTEGRATED DENSITY; CONTINUITY; STATES; DISCRETE; PRODUCTS;
D O I
10.3934/dcds.2019197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an example of a Schrodinger cocycle over a mixing Markov shift for which the integrated density of states has a very weak modulus of continuity, close to the log-Holder lower bound established by W. Craig and B. Simon in [6]. This model is based upon a classical example due to Y. Kifer [15] of a random Bernoulli cocycle with zero Lyapunov exponents which is not strongly irreducible. It follows that the Lyapunov exponent of a Bernoulli cocycle near this Kifer example cannot be Holder or weak-Holder continuous, thus providing a limitation on the modulus of continuity of the Lyapunov exponent of random cocycles.
引用
收藏
页码:4841 / 4861
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 2012, GRADUATE STUDIES MAT, DOI DOI 10.1090/GSM/132.MR2906465
[2]  
Avila A., ABOMINABLE PRO UNPUB
[3]   On the Spectrum and Lyapunov Exponent of Limit Periodic Schrodinger Operators [J].
Avila, Artur .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) :907-918
[4]   Approximating Lyapunov Exponents and Stationary Measures [J].
Baraviera, Alexandre ;
Duarte, Pedro .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) :25-48
[5]   Continuity of Lyapunov exponents for random two-dimensional matrices [J].
Bocker-Neto, Carlos ;
Viana, Marcelo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 :1413-1442
[6]   LOG HOLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES FOR STOCHASTIC JACOBI MATRICES [J].
CRAIG, W ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (02) :207-218
[8]  
Duarte P., 2018, PREPRINT
[9]  
Duarte P., 2017, 31 C BRAS MAT IMPA
[10]  
Duarte P., 2016, Atlantis Studies in Dynamical Systems, V3