Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

被引:27
作者
Skoglund, Nils [1 ]
Grimm, Alejandro [2 ]
Ohman, Marcus [2 ]
Bostrom, Dan [1 ]
机构
[1] Umea Univ, Dept Appl Phys & Elect, Thermochem Energy Convers Lab, SE-90187 Umea, Sweden
[2] Lulea Univ Technol, Dept Engn Sci Math, SE-97187 Lulea, Sweden
基金
瑞典研究理事会;
关键词
SEWAGE-SLUDGE; CHEMICAL FRACTIONATION; ORGANIC CONTAMINANTS; CRYSTAL-STRUCTURES; RAPESEED CAKE; WHEAT-STRAW; COCOMBUSTION; WASTE; ZEOLITE; METALS;
D O I
10.1021/ef402320q
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca-9(K,Mg,Fe)(PO4)(7), for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.
引用
收藏
页码:1183 / 1190
页数:8
相关论文
共 43 条
[1]  
AMAND LE, 2006, FUEL, V85, P1313, DOI DOI 10.1016/J.FUEL.2006.01.001
[2]  
[Anonymous], 2003, DIFFRACPLUS EVA 10 0
[3]  
[Anonymous], 2003, DIFFRACPLUS TOPAS 2
[4]  
[Anonymous], INORGANIC CRYSTAL ST
[5]   STRUCTURE OF NA-4(3+) IN SODIUM ZEOLITE-Y [J].
ARMSTRONG, AR ;
ANDERSON, PA ;
WOODALL, LJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (35) :9087-9088
[6]   Ash Transformation Chemistry during Combustion of Biomass [J].
Bostrom, Dan ;
Skoglund, Nils ;
Grimm, Alejandro ;
Boman, Christoffer ;
Ohman, Marcus ;
Brostrom, Markus ;
Backman, Rainer .
ENERGY & FUELS, 2012, 26 (01) :85-93
[7]   Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids [J].
Clarke, Bradley O. ;
Smith, Stephen R. .
ENVIRONMENT INTERNATIONAL, 2011, 37 (01) :226-247
[8]   Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler [J].
Davidsson, K. O. ;
Amand, L. -E. ;
Elled, A. -L. ;
Leckner, B. .
ENERGY & FUELS, 2007, 21 (06) :3180-3188
[9]  
Eichler-Loebermann B, 2008, CEREAL RES COMMUN, V36, P1259
[10]   Sewage sludge as a deposit inhibitor when co-fired with high potassium fuels [J].
Elled, A. L. ;
Davidsson, K. O. ;
Amand, L. E. .
BIOMASS & BIOENERGY, 2010, 34 (11) :1546-1554