Topotactic Interconversion of Nanoparticle Superlattices

被引:135
作者
Macfarlane, Robert J. [1 ,2 ]
Jones, Matthew R. [2 ,3 ]
Lee, Byeongdu [4 ]
Auyeung, Evelyn [2 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
DNA; BINARY; SHAPE;
D O I
10.1126/science.1241402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.
引用
收藏
页码:1222 / 1225
页数:4
相关论文
共 50 条
[41]   Porphyrins can catalyze the interconversion of DNA quadruplex structural types [J].
Arthanari, H ;
Bolton, PH .
ANTI-CANCER DRUG DESIGN, 1999, 14 (04) :317-326
[42]   Generic phase diagram of binary superlattices [J].
Tkachenko, Alexei V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (37) :10269-10274
[43]   Low-Density 2D Superlattices Assembled via Directional DNA Bonding [J].
Miao, Ziyi ;
Zheng, Cindy Y. ;
Schatz, George C. ;
Lee, Byeongdu ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (35) :19035-19040
[44]   Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices [J].
Castelli, Andrea ;
de Graaf, Joost ;
Marras, Sergio ;
Brescia, Rosaria ;
Goldoni, Luca ;
Manna, Liberato ;
Arciniegas, Milena P. .
NATURE COMMUNICATIONS, 2018, 9
[45]   Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges [J].
Shen, Zhiqiang ;
Nieh, Mu-Ping ;
Li, Ying .
POLYMERS, 2016, 8 (03)
[46]   Langmuir Analysis of Nanoparticle Polyvalency in DNA-Mediated Adsorption [J].
O'Brien, Matthew N. ;
Radha, Boya ;
Brown, Keith A. ;
Jones, Matthew R. ;
Mirkin, Chad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (36) :9532-9538
[47]   Unraveling the Thermodynamics of the Folding and Interconversion of Human Telomere G-Quadruplexes [J].
Boncina, Matjaz ;
Vesnaver, Gorazd ;
Chaires, Jonathan Brad ;
Lah, Jurij .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (35) :10340-10344
[48]   Effect of nanoparticle geometry on sensitivity of metal nanoparticle based sensor [J].
Muldarisnur, M. ;
Fridayanti, N. ;
Oktorina, E. ;
Zeni, E. ;
Elvaswer, E. ;
Syukri, S. .
INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS FOR BETTER FUTURE 2018, 2019, 578
[49]   Nanoparticle-based computing architecture for nanoparticle neural networks [J].
Kim, Sungi ;
Kim, Namjun ;
Seo, Jinyoung ;
Park, Jeong-Eun ;
Song, Eun Ho ;
Choi, So Young ;
Kim, Ji Eun ;
Cha, Seungsang ;
Park, Ha H. ;
Nam, Jwa-Min .
SCIENCE ADVANCES, 2020, 6 (35)
[50]   Collective Diffraction Effects in Perovskite Nanocrystal Superlattices [J].
Toso, Stefano ;
Baranov, Dmitry ;
Filippi, Umberto ;
Giannini, Cinzia ;
Mann, Liberato .
ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (01) :66-76