Topotactic Interconversion of Nanoparticle Superlattices

被引:135
作者
Macfarlane, Robert J. [1 ,2 ]
Jones, Matthew R. [2 ,3 ]
Lee, Byeongdu [4 ]
Auyeung, Evelyn [2 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
DNA; BINARY; SHAPE;
D O I
10.1126/science.1241402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation-the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.
引用
收藏
页码:1222 / 1225
页数:4
相关论文
共 50 条
[1]   Reconstitutable Nanoparticle Superlattices [J].
Radha, Boya ;
Senesi, Andrew J. ;
O'Brien, Matthew N. ;
Wang, Mary X. ;
Auyeung, Evelyn ;
Lee, Byeongdu ;
Mirkin, Chad A. .
NANO LETTERS, 2014, 14 (04) :2162-2167
[2]   Diamond family of nanoparticle superlattices [J].
Liu, Wenyan ;
Tagawa, Miho ;
Xin, Huolin L. ;
Wang, Tong ;
Emamy, Hamed ;
Li, Huilin ;
Yager, Kevin G. ;
Starr, Francis W. ;
Tkachenko, Alexei V. ;
Gang, Oleg .
SCIENCE, 2016, 351 (6273) :582-586
[3]   Nanoparticle Superlattices: The Roles of Soft Ligands [J].
Si, Kae Jye ;
Chen, Yi ;
Shi, Qianqian ;
Cheng, Wenlong .
ADVANCED SCIENCE, 2018, 5 (01)
[4]   DNA based strategy to nanoparticle superlattices [J].
Mazid, Romiza R. ;
Si, Kae Jye ;
Cheng, Wenlong .
METHODS, 2014, 67 (02) :215-226
[5]   Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices [J].
Gabrys, Paul A. ;
Zornberg, Leonardo Z. ;
Macfarlane, Robert J. .
SMALL, 2019, 15 (26)
[6]   A snapshot review of dynamic colloidal nanoparticle superlattices [J].
Yang, Shengsong ;
Murray, Christopher B. .
MRS ADVANCES, 2024, 9 (13) :1077-1087
[7]   Topological structure prediction in binary nanoparticle superlattices [J].
Travesset, A. .
SOFT MATTER, 2017, 13 (01) :147-157
[8]   Supramolecular Semiconductivity through Emerging Ionic Gates in Ion-Nanoparticle Superlattices [J].
Lionello, Chiara ;
Perego, Claudio ;
Gardin, Andrea ;
Klajn, Rafal ;
Pavan, Giovanni M. .
ACS NANO, 2023, 17 (01) :275-287
[9]   Modular and Chemically Responsive Oligonucleotide "Bonds" in Nanoparticle Superlattices [J].
Barnaby, Stacey N. ;
Thaner, Ryan V. ;
Ross, Michael B. ;
Brown, Keith A. ;
Schatz, George C. ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (42) :13566-13571
[10]   Nanoparticle Superlattices as Quasi-Frank-Kasper Phases [J].
Travesset, Alex .
PHYSICAL REVIEW LETTERS, 2017, 119 (11)