The Metric Dimension of Circulant Graphs

被引:17
|
作者
Vetrik, Tomas [1 ]
机构
[1] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2017年 / 60卷 / 01期
基金
新加坡国家研究基金会;
关键词
REGULAR GRAPHS; PRODUCT;
D O I
10.4153/CMB-2016-048-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset W of the vertex set of a graph G is called a resolving set of G if for every pair of distinct vertices u,v of G, there is w is an element of W such that the distance of w and u is different from the distance of w and v. The cardinality of a smallest resolving set is called the metric dimension of G, denoted by dim(G). The circulant graph C-n (1, 2,..., t) consists of the vertices v0,v1..... vn-1 and the edges vivi+j, where 0 <= i <= n-1,1 <= j <= t (2 < t < L[n/2]), the indices are taken modulo n. Grigorious, Manuel, Miller, Rajan, and Stephen proved that dim(Cn (1, 2,...., t)) >=_ t + 1 for t <[n/2],n >= 3, and they presented a conjecture saying that dim(Cn (1, 2,..., t)) = t + p -1 for n = 2tk + t + p, where 3 < p < t + 1. We disprove both statements. We show that if t 4 is even, there exists an infinite set of values of n such that dim( Cn (1, 2,..., t)) = t+p. We also prove that dim(Cn (1, 2,... t))<t+p/2 for n = 2tk + t + p, where t and p are even, t >= 4, 2 <= p <= t, and k >= 1.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 50 条
  • [31] On the metric dimension of incidence graphs
    Bailey, Robert F.
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1613 - 1619
  • [32] On the metric dimension of line graphs
    Feng, Min
    Xu, Min
    Wang, Kaishun
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) : 802 - 805
  • [33] Metric dimension of rough graphs
    Anitha, K.
    Devi, R. Aruna
    Munir, Mohammad
    Nisar, K. S.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1793 - 1806
  • [34] Metric dimension of fullerene graphs
    Akhter, Shehnaz
    Farooq, Rashid
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) : 91 - 103
  • [35] Edge metric dimension of graphs
    Nasir, Ruby
    Zafar, Sohail
    Zahid, Zohaib
    ARS COMBINATORIA, 2019, 147 : 143 - 155
  • [36] On the metric dimension of Cayley graphs
    Rezaei, Afsaneh
    Khashyarmanesh, Kazem
    Afkhami, Mojgan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (02) : 118 - 124
  • [37] On metric dimension of permutation graphs
    Hallaway, Michael
    Kang, Cong X.
    Yi, Eunjeong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 814 - 826
  • [38] On metric dimension of graphs and their complements
    Eroh, L. (eroh@uwosh.edu), 1600, Charles Babbage Research Centre (83):
  • [39] Metric Dimension for Amalgamations of Graphs
    Simanjuntak, Rinovia
    Uttunggadewa, Saladin
    Saputro, Suhadi Wido
    COMBINATORIAL ALGORITHMS, IWOCA 2014, 2015, 8986 : 330 - 337
  • [40] Mixed metric dimension of graphs
    Kelenc, Aleksander
    Kuziak, Dorota
    Taranenko, Andrei
    Yero, Ismael G.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 429 - 438