The Metric Dimension of Circulant Graphs

被引:17
|
作者
Vetrik, Tomas [1 ]
机构
[1] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2017年 / 60卷 / 01期
基金
新加坡国家研究基金会;
关键词
REGULAR GRAPHS; PRODUCT;
D O I
10.4153/CMB-2016-048-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset W of the vertex set of a graph G is called a resolving set of G if for every pair of distinct vertices u,v of G, there is w is an element of W such that the distance of w and u is different from the distance of w and v. The cardinality of a smallest resolving set is called the metric dimension of G, denoted by dim(G). The circulant graph C-n (1, 2,..., t) consists of the vertices v0,v1..... vn-1 and the edges vivi+j, where 0 <= i <= n-1,1 <= j <= t (2 < t < L[n/2]), the indices are taken modulo n. Grigorious, Manuel, Miller, Rajan, and Stephen proved that dim(Cn (1, 2,...., t)) >=_ t + 1 for t <[n/2],n >= 3, and they presented a conjecture saying that dim(Cn (1, 2,..., t)) = t + p -1 for n = 2tk + t + p, where 3 < p < t + 1. We disprove both statements. We show that if t 4 is even, there exists an infinite set of values of n such that dim( Cn (1, 2,..., t)) = t+p. We also prove that dim(Cn (1, 2,... t))<t+p/2 for n = 2tk + t + p, where t and p are even, t >= 4, 2 <= p <= t, and k >= 1.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 50 条
  • [21] Metric dimension and edge metric dimension of windmill graphs
    Singh, Pradeep
    Sharma, Sahil
    Sharma, Sunny Kumar
    Bhat, Vijay Kumar
    AIMS MATHEMATICS, 2021, 6 (09): : 9138 - 9153
  • [22] Fault-tolerant metric dimension of circulant graphs Cn(1,2,3)
    Basak, Mithun
    Saha, Laxman
    Das, Gour Kanta
    Tiwary, Kalishankar
    THEORETICAL COMPUTER SCIENCE, 2020, 817 (817) : 66 - 79
  • [23] On 2-partition dimension of the circulant graphs
    Nadeem, Asim
    Kashif, Agha
    Zafar, Sohail
    Zahid, Zohaib
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9493 - 9503
  • [24] Graphs with the edge metric dimension smaller than the metric dimension
    Knor, Martin
    Majstorovic, Snjezana
    Toshi, Aoden Teo Masa
    Skrekovski, Riste
    Yero, Ismael G.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [25] ON THE METRIC DIMENSION AND FRACTIONAL METRIC DIMENSION OF THE HIERARCHICAL PRODUCT OF GRAPHS
    Feng, Min
    Wang, Kaishun
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 302 - 313
  • [26] Local Metric Dimension of Certain Classes of Circulant Networks
    Cynthia, V. Jude Annie
    Ramya, M.
    Prabhu, S.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (04) : 554 - 560
  • [27] The fractional metric dimension of graphs
    Arumugam, S.
    Mathew, Varughese
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1584 - 1590
  • [28] METRIC DIMENSION OF ANDRASFAI GRAPHS
    Pejman, S. Batool
    Payrovi, Shiroyeh
    Behtoei, Ali
    OPUSCULA MATHEMATICA, 2019, 39 (03) : 415 - 423
  • [29] Nonlocal Metric Dimension of Graphs
    Sandi Klavžar
    Dorota Kuziak
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [30] THE METRIC DIMENSION AND GIRTH OF GRAPHS
    Jannesari, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (03) : 633 - 638