Independent Domination in Cubic Graphs

被引:15
作者
Dorbec, Paul [1 ,2 ]
Henning, Michael A. [3 ]
Montassier, Mickael [4 ]
Southey, Justin [3 ]
机构
[1] Univ Bordeaux, LABRI UMR5800, F-33405 Talence, France
[2] CNRS, LABRI, UMR5800, F-33405 Talence, France
[3] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[4] Univ Montpellier, LIRMM, UMR5506, Montpellier, France
基金
新加坡国家研究基金会;
关键词
independent domination number; domination number; cubic graphs 05C69; REGULAR GRAPHS; NUMBER;
D O I
10.1002/jgt.21855
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i ( G), is the minimum cardinality of an independent dominating set. In this article, we show that if G not equal C5 K2 is a connected cubic graph of order n that does not have a subgraph isomorphic to K2,3, then i ( G) < 3n/ 8. As a consequence of our main result, we deduce Reed's important result [ Combin Probab Comput 5 ( 1996), 277-295] that if G is a cubic graph of order n, then. ( G) = 3n/ 8, where. ( G) denotes the domination number of G. (c) 2015 Wiley Periodicals, Inc. J. Graph Theory 80: 329- 349, 2015
引用
收藏
页码:329 / 349
页数:21
相关论文
共 11 条
[1]  
Fischer D. C., 1999, P 8 QUADR INT C GRAP, P411
[2]   Independent domination in graphs: A survey and recent results [J].
Goddard, Wayne ;
Henning, Michael A. .
DISCRETE MATHEMATICS, 2013, 313 (07) :839-854
[3]   On the Independent Domination Number of Regular Graphs [J].
Goddard, Wayne ;
Henning, Michael A. ;
Lyle, Jeremy ;
Southey, Justin .
ANNALS OF COMBINATORICS, 2012, 16 (04) :719-732
[4]  
Haynes T.W., 1998, FUNDAMENTALS DOMINAT, DOI 10.1201/9781482246582
[5]  
Haynes TW., 1998, Fundamentals of domination in graphs
[6]  
Kelmans A., 2006, ARXIVMATHCO0607512
[7]  
Kostochka AV, 2009, SIB ELECTRON MATH RE, V6, P465
[8]   On independent domination number of regular graphs [J].
Lam, PCB ;
Shiu, WC ;
Sun, L .
DISCRETE MATHEMATICS, 1999, 202 (1-3) :135-144
[9]  
Rautenbach D, 1999, J GRAPH THEOR, V31, P297, DOI 10.1002/(SICI)1097-0118(199908)31:4<297::AID-JGT4>3.0.CO
[10]  
2-1