Optimal Control for Heterogeneous Node-Based Information Epidemics Over Social Networks

被引:46
作者
Liu, Fangzhou [1 ]
Buss, Martin [1 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, Chair Automat Control Engn, D-80333 Munich, Germany
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2020年 / 7卷 / 03期
基金
美国国家科学基金会;
关键词
Epidemics; Optimal control; Numerical models; Computational modeling; Social networking (online); Diffusion processes; Markov processes; Information epidemics; optimal control; social networks; DIFFUSION; MODEL; TRANSMISSION; SPREAD; SIS;
D O I
10.1109/TCNS.2019.2963488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we investigate the optimal control problems of heterogeneous node-based information epidemics. A node-based susceptible-infected-recovered-susceptible model is introduced to describe the information diffusion processes taking into account heterogeneities in both network structures and individual characters. Aiming at guiding information dissemination processes toward the desired performance, we propose an optimal control framework with respect to two typical scenarios, i.e., impeding the spread of rumors and enhancing the spread of marketing or campaigning information. We prove the existence of the solutions and solve the optimal control problems by the Pontryagin maximum principle and the forward-backward sweep method. Moreover, numerical experiments validate the use of the node-based SIRS model by comparing it with the exact 3(N)-state Markov chain model. The effectiveness of the proposed control rules is demonstrated on both models. Furthermore, discussion on the influence of the parameters provides insights into the strategies of guiding information diffusion processes.
引用
收藏
页码:1115 / 1126
页数:12
相关论文
共 49 条
[1]  
[Anonymous], 2004, P 13 INT C WORLD WID, DOI DOI 10.1145/1046456.1046462
[2]  
[Anonymous], 2013, J MARKETING DEV COMP
[3]  
Bauckhage C., 2011, PROC ICWSM2011, P42
[4]   Models for the Diffusion of Beliefs in Social Networks [J].
Chamley, Christophe ;
Scaglione, Anna ;
Li, Lin .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (03) :16-29
[5]   Global stability and optimal control of an SIRS epidemic model on heterogeneous networks [J].
Chen, Lijuan ;
Sun, Jitao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 :196-204
[6]  
Chen XM, 2014, IEEE DECIS CONTR P, P6209, DOI 10.1109/CDC.2014.7040362
[7]   A deterministic mathematical model for the spread of two rumors [J].
Escalante, Rene ;
Odehnal, Marco .
AFRIKA MATEMATIKA, 2020, 31 (02) :315-331
[8]  
Fardad M, 2012, IEEE DECIS CONTR P, P2539, DOI 10.1109/CDC.2012.6426070
[9]  
Fleming W.H., 1975, Deterministic and Stochastic Optimal Control, DOI [DOI 10.1007/978-1-4612-6380-7, 10.1007/978-1-4612-6380-7]
[10]   OPTIMAL CONTROL APPLIED TO VACCINATION AND TREATMENT STRATEGIES FOR VARIOUS EPIDEMIOLOGICAL MODELS [J].
Gaff, Holly ;
Schaefer, Elsa .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2009, 6 (03) :469-492