Multivariate truncated moments

被引:40
作者
Arismendi, J. C. [1 ]
机构
[1] Univ Reading, Henley Business Sch, ICMA Ctr, Reading RG6 6BA, Berks, England
关键词
Truncated moments; Extreme moments; Censored data; BIVARIATE NORMAL-DISTRIBUTION; MULTI-NORMAL DISTRIBUTION; DEPENDENT-VARIABLES; SKEWNESS; KURTOSIS; TESTS;
D O I
10.1016/j.jmva.2013.01.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive formulae for the higher order tail moments of the lower truncated multivariate standard normal (MVSN), Student's t, lognormal and a finite-mixture of multivariate normal distributions (FMVN). For the MVSN we propose a recursive formula for moments of arbitrary order as a generalization of previous research. For the Student's t-distribution, the recursive formula is an extension of the normal case and when the degrees of freedom v -> infinity the tail moments converge to the normal case. For the lognormal, we propose a general result for distributions in the positive domain. Potential applications include robust statistics, reliability theory, survival analysis and extreme value theory. As an application of our results we calculate the exceedance skewness and kurtosis and we propose a new definition of multivariate skewness and kurtosis using tensors with the moments in their components. The tensor skewness and kurtosis captures more information about the shape of distributions than previous definitions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 75
页数:35
相关论文
共 34 条
[22]  
Leppard P, 1989, J R STAT SOC C-APPL, V38, P543, DOI DOI 10.2307/2347752
[23]   COMMUTATION MATRIX - SOME PROPERTIES AND APPLICATIONS [J].
MAGNUS, JR ;
NEUDECKER, H .
ANNALS OF STATISTICS, 1979, 7 (02) :381-394
[24]   TESTS FOR MULTIVARIATE NORMALITY [J].
MALKOVICH, JF ;
AFIFI, AA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (341) :176-179
[25]  
Manjunath B., 2021, MOMENTS CALCULATION, V1, P17, DOI [10.35566/jbds/ v1n1/p2. pages 16, 19, 207, 208, DOI 10.35566/JBDS/V1N1/P2]
[26]   MEASURES OF MULTIVARIATE SKEWNESS AND KURTOSIS WITH APPLICATIONS [J].
MARDIA, KV .
BIOMETRIKA, 1970, 57 (03) :519-&
[27]   ON MULTIVARIATE SKEWNESS AND KURTOSIS [J].
MORI, TF ;
ROHATGI, VK ;
SZEKELY, GJ .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1993, 38 (03) :547-551
[28]  
Nadarajah S., 2007, EC QUAL CONTROL, V22, P303, DOI [10.1515/EQC.2007.303, DOI 10.1515/EQC.2007.303]
[29]   A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS [J].
PLACKETT, RL .
BIOMETRIKA, 1954, 41 (3-4) :351-360
[30]  
RAO BR, 1968, BIOMETRIKA, V55, P433, DOI 10.1093/biomet/55.2.433