Asymptotic properties of receding horizon optimal control problems

被引:22
作者
Ito, K
Kunisch, K
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
关键词
receding horizon control; model prediction control; control Liapunov function; stabilizability; Liapunov equation;
D O I
10.1137/S0363012900369423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The asymptotic behavior of receding horizon optimal control problems with terminal cost chosen as a control Liapunov function is analyzed for regulator as well as disturbance attenuation problems. Both the continuous as well as the discrete time cases are treated. Further, the approximation of the continuous time optimal control problem by the discrete time receding horizon problems is studied.
引用
收藏
页码:1585 / 1610
页数:26
相关论文
共 22 条
[1]  
Allgower F., 1999, Advances in Control. Highlights of ECC'99, P391
[2]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[3]   Instantaneous control of backward-facing step flows [J].
Choi, H ;
Hinze, M ;
Kunisch, K .
APPLIED NUMERICAL MATHEMATICS, 1999, 31 (02) :133-158
[4]   FEEDBACK-CONTROL FOR UNSTEADY-FLOW AND ITS APPLICATION TO THE STOCHASTIC BURGERS-EQUATION [J].
CHOI, HC ;
TEMAM, R ;
MOIN, P ;
KIM, J .
JOURNAL OF FLUID MECHANICS, 1993, 253 :509-543
[5]  
FLEMING W. H., 2005, Stochastic Modelling and Applied Probability, V2nd
[6]  
Fleming W.H., 2012, Applications of Mathematics, VVolume 1
[7]  
Freeman R. A., 1996, Robust Nonlinear Control Design: State-space and Lyapunov Techniques
[8]   MODEL PREDICTIVE CONTROL - THEORY AND PRACTICE - A SURVEY [J].
GARCIA, CE ;
PRETT, DM ;
MORARI, M .
AUTOMATICA, 1989, 25 (03) :335-348
[9]  
HINZE M, IN PRESS NONLINEAR A
[10]  
ITO K, 1999, ENCY ELECT ELECT ENG, V15, P364